В решении.
Объяснение:
1.
а) х² + 6х = 0 неполное квадратное уравнение
х(х + 6) = 0
х₁ = 0;
х + 6 = 0
х₂ = -6.
б) -3х² = 18х неполное квадратное уравнение
-3х² - 18х = 0
-3х(х + 6) = 0
-3х = 0
2.
а) 3х² - 27 = 0 неполное квадратное уравнение
3х² = 27
х² = 9
х = ±√9
х = ± 3;
б) 18 - 6х² = 0 неполное квадратное уравнение
-6х² = -18
6х² = 18
х² = 3
х = ±√3.
3.
а) -5х² = 0 неполное квадратное уравнение.
х² = 0/-5
х = 0;
б) 32 + 8х² = 0 неполное квадратное уравнение.
8х² = -32
х² = -32/8
х² = -4;
Нет решения.
4.
а) 6х² - 13х - 15 = 0
D=b²-4ac = 169 + 360 = 529 √D=23
х₁=(-b-√D)/2a
х₁=(13-23)/12
х₁= -10/12
х₁= -5/6;
х₂=(-b+√D)/2a
х₂=(13+23)/12
х₂=36/12
х₂=3.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
б) -5х² - 27х + 56 = 0/-1
5х² + 27х - 56 = 0
D=b²-4ac = 729 + 1120 = 1849 √D=43
х₁=(-27-43)/10
х₁= -70/10
х₁= -7;
х₂=(-27+43)/10
х₂=16/10
х₂=1,6.
1.Ix-2I+Ix+3I=2-x+x+3=5
2. ((2x-3)³)¹/³-2x=2x-3-2x=-3
3. (x²+y²-x²-xy)*(x/y)/(x*(x¹/²+y¹/²))=(y²-yx)/(y**(x¹/²+y¹/²))=
y*(x¹/²+y¹/²)(x¹/²-y¹/²)/(y**(x¹/²+y¹/²))=)(x¹/²-y¹/²)=√x-√y;
√0.09-√0.04=03-0.2=01;
4. 5х²+9х+64=64; 5х²+9х=0; х*(5х+9)=0; х=0; х=-1.8
сумма корней 0-1.8=-1.8
6. ОДЗ х²+3х-18>0; По Виету корни уравнения х²+3х-18=0
это х=-6 и х=3
-63
+ - +
х∈(-∞;-6)∪(3;+∞)
т.к. 4 меньше 9 при любом х из ОДЗ, то ответ х∈(-∞;-6)∪(3;+∞)
5. отнимем от первого уравнения второе . получим 6∛у=6, откуда у=1, тогда 2∛х=-7+3, ∛х=-2, х=-8
ответ (-8;1)
В решении.
Объяснение:
1.
а) х² + 6х = 0 неполное квадратное уравнение
х(х + 6) = 0
х₁ = 0;
х + 6 = 0
х₂ = -6.
б) -3х² = 18х неполное квадратное уравнение
-3х² - 18х = 0
-3х(х + 6) = 0
-3х = 0
х₁ = 0;
х + 6 = 0
х₂ = -6.
2.
а) 3х² - 27 = 0 неполное квадратное уравнение
3х² = 27
х² = 9
х = ±√9
х = ± 3;
б) 18 - 6х² = 0 неполное квадратное уравнение
-6х² = -18
6х² = 18
х² = 3
х = ±√3.
3.
а) -5х² = 0 неполное квадратное уравнение.
х² = 0/-5
х = 0;
б) 32 + 8х² = 0 неполное квадратное уравнение.
8х² = -32
х² = -32/8
х² = -4;
Нет решения.
4.
а) 6х² - 13х - 15 = 0
D=b²-4ac = 169 + 360 = 529 √D=23
х₁=(-b-√D)/2a
х₁=(13-23)/12
х₁= -10/12
х₁= -5/6;
х₂=(-b+√D)/2a
х₂=(13+23)/12
х₂=36/12
х₂=3.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
б) -5х² - 27х + 56 = 0/-1
5х² + 27х - 56 = 0
D=b²-4ac = 729 + 1120 = 1849 √D=43
х₁=(-b-√D)/2a
х₁=(-27-43)/10
х₁= -70/10
х₁= -7;
х₂=(-b+√D)/2a
х₂=(-27+43)/10
х₂=16/10
х₂=1,6.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
1.Ix-2I+Ix+3I=2-x+x+3=5
2. ((2x-3)³)¹/³-2x=2x-3-2x=-3
3. (x²+y²-x²-xy)*(x/y)/(x*(x¹/²+y¹/²))=(y²-yx)/(y**(x¹/²+y¹/²))=
y*(x¹/²+y¹/²)(x¹/²-y¹/²)/(y**(x¹/²+y¹/²))=)(x¹/²-y¹/²)=√x-√y;
√0.09-√0.04=03-0.2=01;
4. 5х²+9х+64=64; 5х²+9х=0; х*(5х+9)=0; х=0; х=-1.8
сумма корней 0-1.8=-1.8
6. ОДЗ х²+3х-18>0; По Виету корни уравнения х²+3х-18=0
это х=-6 и х=3
-63
+ - +
х∈(-∞;-6)∪(3;+∞)
т.к. 4 меньше 9 при любом х из ОДЗ, то ответ х∈(-∞;-6)∪(3;+∞)
5. отнимем от первого уравнения второе . получим 6∛у=6, откуда у=1, тогда 2∛х=-7+3, ∛х=-2, х=-8
ответ (-8;1)