если для первого графика y = 4x^2 вершина находится в точке (0;0), то
ось симметрии параболы - ось OY (уравнение x=0)
то для второго графика ось симметрии сместится влево на 2 (уравнение x = -2, все первое слагаемое обратится в 0 и получится y = -5), т.е. для второго графика вершина опустится вниз по оси OY на 5 единиц и сместится влево на 2 единицы по оси OX
координаты вершины новой параболы (-2;-5), ветви вверх и она в точности повторяет первый график (из новой точки---новой вершины), иными словами
новый график получится параллельным переносом исходного графика вниз по оси OY на 5 единиц и влево по оси OX на 2 единицы
B₃* B₇=28 ⁴/₉=²⁵⁶/₉
q-? S₇-?
B₃=B₁*q²
B₅=B₁*q⁴
B₇=B₁*q⁶
{B₁*q² * B₁*q⁴=⁶⁴/₉ {B₁² * q⁶=⁶⁴/₉
{B₁*q² * B₁*q⁶=²⁵⁶/₉ {B₁² * q⁸=²⁵⁶/₉
B₁²=⁶⁴/₉ : q⁶ =64
9q⁶
64 * q⁸ = 256
9q⁶ 9
64q² =256
9 9
64q²=256
q²=256
64
q²=4
q₁=2
q₂=-2
1) При q=2:
B₁²= 64 = 1
9*2⁶ 9
B₁=¹/₃ или B₁=-¹/₃
B₇=B₁*q⁶
a) При B₁=¹/₃ и q=2 B₇=¹/₃*2⁶=⁶⁴/₃
S₇=B₇q-B₁=⁶⁴/₃ * 2 - ¹/₃ =127 =42 ¹/₃
q-1 2-1 3
б) При B₁=-¹/₃ и q=2 B₇=-¹/₃*2⁶=-⁶⁴/₃
S₇=-⁶⁴/₃ * 2 +¹/₃ =-127 =-42 ¹/₃
2-1 3
2) При q=-2
B₁=¹/₃ или B₁=-¹/₃
a) При B₁=¹/₃ и q=-2:
B₇=¹/₃*(-2)⁶=⁶⁴/₃
S₇=⁶⁴/₃ * (-2) - ¹/₃ =-¹²⁸/₃ - ¹/₃ = -¹²⁹/₃ =129 =14 ³/₉ =14 ¹/₃
-2-1 -3 -3 9
б) При B₁=-¹/₃ и q=-2
B₇=-¹/₃*(-2)⁶=-⁶⁴/₃
S₇=-⁶⁴/₃ * (-2)+¹/₃ =¹²⁸/₃ + ¹/₃ =¹²⁹/₃ =-129 =-14 ¹/₃
-2-1 -3 -3 9
ответ: 1) при B₁=¹/₃ и q=2 S₇=42 ¹/₃;
2) при B₁=-¹/₃ и q=2 S₇=-42 ¹/₃;
3) при B₁=¹/₃ и q=-2 S₇=14 ¹/₃;
4) при B₁=-¹/₃ и q=-2 S₇=-14 ¹/₃
если для первого графика y = 4x^2 вершина находится в точке (0;0), то
ось симметрии параболы - ось OY (уравнение x=0)
то для второго графика ось симметрии сместится влево на 2 (уравнение x = -2, все первое слагаемое обратится в 0 и получится y = -5), т.е. для второго графика вершина опустится вниз по оси OY на 5 единиц и сместится влево на 2 единицы по оси OX
координаты вершины новой параболы (-2;-5), ветви вверх и она в точности повторяет первый график (из новой точки---новой вершины), иными словами
новый график получится параллельным переносом исходного графика вниз по оси OY на 5 единиц и влево по оси OX на 2 единицы