ΔАВС. Если две биссектрисы пересекаются в точке К, то и третья биссектриса бдет проходить через эту точку, так как биссектрисы треугольника пересекаются в одной точке. ⇒ КС - биссектриса. Чтобы было удобно читать текст, обозначим ∠А=2α, ∠В=2β , ∠С=2ω ⇒ ∠ВАК=∠САК=α , ∠АВК=∠СВК=β , ∠ВСК=∠АСК=ω . ΔАВК: α+β+∠АКВ=α+β+146°=180° ⇒ α+β=180°-146°=34° ΔВКС: α+ω+∠ВКС=180° } ΔАКС: β+ω+∠АКС=180° } Сложим два последних равенства: α+β+2ω+∠ВКС+∠АКС=360° 34°+2ω=360°-(∠ВКС+∠АКС) 2ω=326°-(∠ВКС+∠АКС) ∠АКВ+∠ВКС+∠АКС=360° ⇒ ∠ВКС+∠АКС=360°-∠АКВ=360°-146°=214° 2ω=326°-214°=112° ω=56° ∠ВСК=56°
1)=(по основанию 5) log(4+x)(1+2x)= log 9 4+x>0 x>-4 и 1+2x>0 x>-1/2, т е х>-1/2 4+8x+x+2x²=9 2x²+9x-5=0 x1,2=((-9+-√(81+40))/4= (-9+-11)/4, x1=-5-не удовлетворяет x>-1/2 x2=1/2-ответ 2) 1+x>0 x>-1и 2+x>0 x>-2, т е х>-1 = (по основанию 2)log(1+x)(2+x)=1 x²+x+2x+2=2, x²+3x=0 x1=0, x2=-3-не удовлетворяет x>-1 x=0- ответ 3) x-2>0 x>2 и x+1>0 x>-1, т е x>2 = (по основанию 2)log(x-2)(x+1)=2, x²+x-2x-2=4, x²-x-6=0, x1,2=(1+-√(1+24))/2=(1+-5)/2, x=3- ответ
КС - биссектриса. Чтобы было удобно читать текст, обозначим
∠А=2α, ∠В=2β , ∠С=2ω ⇒ ∠ВАК=∠САК=α , ∠АВК=∠СВК=β ,
∠ВСК=∠АСК=ω .
ΔАВК: α+β+∠АКВ=α+β+146°=180° ⇒ α+β=180°-146°=34°
ΔВКС: α+ω+∠ВКС=180° }
ΔАКС: β+ω+∠АКС=180° }
Сложим два последних равенства:
α+β+2ω+∠ВКС+∠АКС=360°
34°+2ω=360°-(∠ВКС+∠АКС)
2ω=326°-(∠ВКС+∠АКС)
∠АКВ+∠ВКС+∠АКС=360° ⇒
∠ВКС+∠АКС=360°-∠АКВ=360°-146°=214°
2ω=326°-214°=112°
ω=56°
∠ВСК=56°
4+x>0 x>-4 и 1+2x>0 x>-1/2, т е х>-1/2
4+8x+x+2x²=9
2x²+9x-5=0
x1,2=((-9+-√(81+40))/4= (-9+-11)/4, x1=-5-не удовлетворяет x>-1/2
x2=1/2-ответ
2) 1+x>0 x>-1и 2+x>0 x>-2, т е х>-1
= (по основанию 2)log(1+x)(2+x)=1
x²+x+2x+2=2, x²+3x=0 x1=0, x2=-3-не удовлетворяет x>-1
x=0- ответ
3) x-2>0 x>2 и x+1>0 x>-1, т е x>2
= (по основанию 2)log(x-2)(x+1)=2, x²+x-2x-2=4, x²-x-6=0, x1,2=(1+-√(1+24))/2=(1+-5)/2, x=3- ответ