Работаем с квадратами, поэтому берем кубический многочлен.
Напишем систему уравнений
S = An^3 + Bn^2 + Cn + D
Где будем подставлять посчитанные результаты S и n от 0 до 4.
D = 0
A + B + C + D = 1
8A + 4B + 2C + D = 5
27A + 9B+ 3C + D = 14
далее
A + B + C = 1
8A + 4B + 2C = 5
27A + 9B + 3C = 14
вычтем первое уравнение помноженное на 2 из второго
и первое уравнение помноженное на 3 из третьего
6A + 2B = 3
24A + 6B = 11
вычтем второе уравнение помноженное на 3 из третьего
6A = 2
решая эту систему получим
A = 1/3
B = 1/2
C = 1/6
подставляя найденные значения в самое верхнее выражение
получим
S = (1/3)n^3 + (1/2)n^2 + (1/6)n
это и есть искомая формула
(приведите ее к общему знаменателю, да разложите на множители)
х км/ч - собственная скорость лодки
у- скорость течения реки
(х + у) - скорость лодки по течению
(х - у) - скорость лодки против течения
Первое уравнение
16/(х + у) + 16/(х - у) = 3
Второе уравнение
8/(х +у) + 12/(х - у) = 2
Имеем систему уравнений
{16/(х + у) + 16/(х - у) = 3
{8/(х +у) + 12/(х - у) = 2
Решаем сложения
{16/(х + у) + 16/(х - у) = 3
{8/(х +у) + 12/(х - у) = 2 второе умножим на (-2)
и получим
{16/(х + у) + 16/(х - у) = 3
{-16/(х +у) - 24/(х - у) = - 4
А теперь сложим и получим
16/(х + у) + 16/(х - у) - 16/(х +у) - 24/(х - у) = 3 - 4
- 8/(х - у) = - 1
(х - у) = 8
Выразим х
х = 8 + у
и подставим в первое уравнение
16/(8 + у + у) + 16/8 = 3
16/(8 + 2у) +2 = 3
16/(8 + 2у) = 3 - 2
16/(8 + 2у) = 1
8 + 2у = 16
2у = 16 - 8
2у = 8
у = 8 : 2
у = 4 км/ч - скорость течения реки
В уравнение х = 8 + у подставим у = 4
х = 8 + 4 = 12 км/ч - собственная скорость лодки
ответ: 4 км/ч; 12км/ч
Система
32х - 3х² + 3у² = 0
10х + 2у - х² + у² = 0
Преобразуем
32х - 3(х² - у²) = 0
10х + 2у - (х² - у²) = 0 умножим второе на (-3)
получим
32х - 3(х² - у²) = 0
- 30х - 6у + 3(х² - у²) = 0
А теперь сложим эти уравнения
32х - 3(х² - у²) - 30х - 6у + 3(х² - у²) = 0
и получим
2х - 6у = 0
Сократив на 2, имеем
х - 3у = 0
Отсюда
х = 3у
Подставим в первое и решаем
32 * 3у - 3* (3у)² + 3у² = 0
96у - 27у² + 3у² = 0
- 24у² + 96у = 0
-24у* (у - 4) = 0
у₁ = 0
у - 4 = 0
у₂ = 4
В уравнение х = 3у вместо у ставим его значения и находим х
При у₁ = 0 х₁ = 3* 0=0 Первое решение (0; 0)
При у₂ = 4 х₂ = 3 * 4 = 12 Второе решение ( 12: 4)
Работаем с квадратами, поэтому берем кубический многочлен.
Напишем систему уравнений
S = An^3 + Bn^2 + Cn + D
Где будем подставлять посчитанные результаты S и n от 0 до 4.
D = 0
A + B + C + D = 1
8A + 4B + 2C + D = 5
27A + 9B+ 3C + D = 14
далее
A + B + C = 1
8A + 4B + 2C = 5
27A + 9B + 3C = 14
вычтем первое уравнение помноженное на 2 из второго
и первое уравнение помноженное на 3 из третьего
A + B + C = 1
6A + 2B = 3
24A + 6B = 11
вычтем второе уравнение помноженное на 3 из третьего
A + B + C = 1
6A + 2B = 3
6A = 2
решая эту систему получим
A = 1/3
B = 1/2
C = 1/6
D = 0
подставляя найденные значения в самое верхнее выражение
получим
S = (1/3)n^3 + (1/2)n^2 + (1/6)n
это и есть искомая формула
(приведите ее к общему знаменателю, да разложите на множители)