Известно , что график функции y=k/x проходит через точку A(-4;-0,25). Проходит ли это график через точку:
а)B(-8;-0,125);
б)C(50;-0,02);
в)D(-40;-0,05)?
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) Сначала нужно найти k, чтобы определить уравнение функции.
у=k/x
A(-4;-0,25)
Нужно в уравнение подставить известные значения (координаты точки А):
-0,25 = k/-4
k= (-0,25)*(-4)
k=1;
Уравнение функции имеет вид:
у = 1/х.
2) Теперь можно определять принадлежность точек графику:
S = a · b = 13 · 13 = 169 см² - площадь ткани
| 5 cм | 5 см | 3 см |
⇵ ⇵ ⇵ ⇵ 13 · 1 см
5 см · 2 · 1 см · 13 = 130 см² (26 отрезов 5×1 см)
Остаётся 3 см по длине и 13 см по ширине
5 см · 2 (по ширине) · 1 см · 3 (по длине) = 30 см² (6 отрезов 5×1 см)
Остаётся 3 см по длине и 3 см по ширине = 9 см² (3×3 см - остаток)
Итого: 130 см² + 30 см² + 9 см² = 169 см² - площадь (по условию)
26 отрезов + 6 отрезов = 32 отреза размером 5×1 см и 9 см² - остаток
Вiдповiдь: 32 шматка (max).
В решении.
Объяснение:
Известно , что график функции y=k/x проходит через точку A(-4;-0,25). Проходит ли это график через точку:
а)B(-8;-0,125);
б)C(50;-0,02);
в)D(-40;-0,05)?
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) Сначала нужно найти k, чтобы определить уравнение функции.
у=k/x
A(-4;-0,25)
Нужно в уравнение подставить известные значения (координаты точки А):
-0,25 = k/-4
k= (-0,25)*(-4)
k=1;
Уравнение функции имеет вид:
у = 1/х.
2) Теперь можно определять принадлежность точек графику:
а)B(-8;-0,125);
у=1/х
-0,125 = 1/-8
-0,125 = -0,125, проходит.
б)C(50;-0,02);
у=1/х
-0,02 = 1/50
-0,02 ≠ 0,02, не проходит.
в)D(-40;-0,05).
у=1/х
-0,05 = 1/-40
-0,05 ≠ -0,025, не проходит.