Для доказательства достаточно подставить вместо х предложенное значение и выяснить, будет ли равенство верным. а) х= 3 3²-4·3+3=0 9-12+3=0 0=0 - верное равенство, значит, число 3 является корнем уравнения х²-4х+3=0. Доказано.
б) х= - 7 2·(-7)²+(-7)-3=0 98-7-3=0 88≠0 - неверное равенство, значит, число -7 не является корнем уравнения 2х² +х-3=0.
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .
а) х= 3
3²-4·3+3=0
9-12+3=0
0=0 - верное равенство, значит, число 3 является корнем уравнения х²-4х+3=0. Доказано.
б) х= - 7
2·(-7)²+(-7)-3=0
98-7-3=0
88≠0 - неверное равенство, значит, число -7 не является корнем уравнения 2х² +х-3=0.
в) х= -5
2·(-5)² - 3·(-5) - 65 =0
50+15-65 = 0
0 = 0 - верное равенство, значит, число -5 является корнем уравнения 2х² -3х-65=0.
г) х=6
6²-2·6+6=0
36-12+6 = 0
30≠0 - неверное равенство, значит, число 6 не является корнем уравнения х²-2х+6=0.