к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
1) х + у = 3 |*2 2х + 2у = 6
3х -2у = -1 3х - 2у = -1 Сложим почленно: 5х = 5,⇒ х = 1
Теперь х =1 подставим в любое уравнение, например, в первое:
х + у = 3
1 + у = 3
у = 2
ответ:(1;2)
2) 7х +4у = 23 |*5 35x +20y = 115
8х +10 у = 19|*(-2) -16х -20у = -38 сложим почленно, получим:
19 у = 77 , ⇒ у= 77/19
Теперь у = 77/19 подставим в любое уравнение, например, в первое:
7х + 4у = 23
7х + 4*77/19 = 23
7х = 23 - 308/19=129/19
х = 129/133
ответ(129/133; 77/19)
ответ: ниа.
объяснение:
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; sin gx = b; tg kx = c; ctg tx = d.