На каждом кубике выпадает любой из 6 вариантов (1, 2, 3, 4, 5, 6), по правилу умножения всего вариантов выпадения очков на двух кубиках 6 * 6 = 36 - это общее число исходов.
Максимальное число очков 3 или меньше, если на каждом из кубиков выпало 1, 2 или 3 (3 варианта на каждый кубик). По правилу умножения таких исходов 3 * 3 = 9. Тогда благоприятных исходов 36 - 9 = 27.
По формуле классической вероятности вероятность равна отношению числа благоприятных исходов к общему числу исходов, что равно 27/36 = 3/4.
2*4^x-3*10^x=5*25^xРазделим правую и левую части на 25^x. Получим 4^x 10^x2 - 3 = 5 25^x 25^x Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом 2* (4 : 25)^х - 3*(10 : 25)^х = 5Во второй дроби можно сократить 10 и 25 на 5. Получаем 2* (4 : 25)^х - 3*(2 : 5)^х = 5 Так как 4 = 2^2, a 25 = 5^2, получим следующее 2* (2 : 5)^2х - 3*(2 : 5)^х = 5 Введем новую переменную t = (2 : 5)^хПолучим новое уравнение2*t^2 - 3*t = 52*t^2 - 3*t - 5 = 0Решаем через дискриминант. a = 2, b = -3, c = -5D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49t(1) = (3 - 7) : 4 = -1t(2) = (3 + 7) : 4 = 2,5 x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.Тогда получаем (2 : 5)^х = t(2) (2 : 5)^х = 5 : 2 (2 : 5)^х = (2 : 5)^(-1) х = -1 ответ: х = -1
Максимальное число очков 3 или меньше, если на каждом из кубиков выпало 1, 2 или 3 (3 варианта на каждый кубик). По правилу умножения таких исходов 3 * 3 = 9. Тогда благоприятных исходов 36 - 9 = 27.
По формуле классической вероятности вероятность равна отношению числа благоприятных исходов к общему числу исходов, что равно 27/36 = 3/4.