В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
илья8551
илья8551
05.11.2021 19:55 •  Алгебра

Запишите уравнение прямой параллельной графику функции у=5х-7 и проходящей через точку М(4;-3)

Показать ответ
Ответ:
Женёк2006457
Женёк2006457
30.01.2021 16:41

пусть цифры числа будут A и B

тогда

A^3+B^3 = 91

(A+B)AB=84 

 

(a + b)(a^2 - ab + b^2)=91

(A+B)AB=84

 

рассмотрим первое уравнение: так как а и в цифры числа - то они являются натуральными числами. отсюда следует что а+в и a^2-ab+b^2 натуральные числа.

 

число 91 разложить на множители можно 2-мя это 1*91 и 7*13

первый вариант неподходит (если а+в=1 то а либо б = 0 тогда значение  a^2-ab+b^2 будет равно 1 если а+в=91 то  a^2 - ab + b^2 небудет равно 1 так как разность суммы квадратов чисел и произведения этих чисел будет больше 1)

второй вариант: 

 

2.1

a + b = 7  

a^2 - ab + b^2 = 13  

выразим а а=7-в

(7-b)^2-b(7-b)+b^2-13=0

49-14b+b^2-7b+b^2+b^2-13=0

3b^2-21b=-36

3b^2-21b+36=0

b^2-7b+12=0

d=1

b1=3 b2=4 a1=4 a2=3

2.2

a + b = 13  

a^2 - ab + b^2 = 7

а=13-b

(13-b)^2 -b(13-b)+b^2=7

169-26b+b^2-13b+b^2=7 

169-39b+3b^2=7

3b^2-39b+162=0

b^2-13b+54=0

d=169-216

уравнение решений не имеет.

тогда получаем два возможных а и б (4 и 3) (3 и 4) 

подставим значения а и б в уравнение  (A+B)AB=84 оба значения а и б удовлетворяют уравнению.

ответ: такие числа 43 и 34 

 

 

 

 

0,0(0 оценок)
Ответ:
voenngti
voenngti
02.04.2022 08:41
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота