Отношение массы золота к массе серебра для 1-го и 2-го сплава соответственно.
Выразим золото в обоих случаях, так как оно через умножение будет (это удобнее)
Что такое масса сплава
Для конкретных сплавов это:
Далее составляется новый сплав, который составляется из первого и второго сплава, но возьмутся части от каждого. Пусть эти доли будут равны для первого и второго сплава соответственно.
Общая масса нового сплава будет равна:
Причем суммарная масса золота здесь будет
Первое слагаемое - масса золота в новом сплаве из первого сплава, второе слагаемое - масса золота в новом сплаве из второго сплава.
И вот тут применяем условие, что эти два слагаемых равны, то есть
Вспомним, какие будут массы первого и второго сплава в новом сплаве и найдем их отношение.
Из заданных можно лишь сказать, что оба сомножителя будут больше единицы, так что и все произведение будет больше единицы, то есть масса первого сплава должна быть больше.
UPD. Дорешивал я уже задачу, где массы золота в новом сплаве равны (изначально недопонял условие)
Но нестрашно. Тоже полезно. Теперь дорешаем нашу задачу. В ней равны массы золота и серебра в новом сплаве.
Общая масса золота в новом сплаве это
Общая масса серебра в новом сплаве это
И известно, что эти массы равны. Логика та же: приравнять, выразить и подставить.
Замечательно. Только для удобства обозначим
Вспоминаем, что
А вот здесь как раз вполне можно использовать знание, что и поменять знаки одновременно в скобках с вычитанием как в числителе, так и в знаменателе и тогда
ответ: 15
Объяснение:
y=7tgx-7x+15
y'=7·(tgx)'-7·x'+15'
y'=7·1/cos²x -7
y'=7·(1/cos²x -1)=7·(1-cos²x)/cos²x=7·sin²x/cos²x=7·tg²x
y'=7·tg²x
7·tg²x=0
tg²x=0
tgx=0
x=π·n, n∈z
Только при n=0, x=0∈[-пи/4);0]
y(-π/4)=7·tg(-π/4)-7·(-π/4)+15=-7+7π/4+15=8+7·π/4
y(0)=7·tg0-7·0+15=-0-0+15=15
Сравним 8+7·π/4
3<π<3,2⇒ 3/4<π/4<3,2/4⇒ 7·3/4<7·π/4<7·3,2/4⇒5,25<7·π/4<5,6⇒
8+5,25<8+7·π/4<8+5,6⇒13,25<8+7·π/4<13,6⇒8+7·π/4<15⇒15- наибольшее значение функции y=7·tgx-7·x+15 на отрезке [-пи/4;0]
ответ:15
Распишу, как я вижу эту задачу
Пусть масса золота будет , серебра
Отношение массы золота к массе серебра для 1-го и 2-го сплава соответственно.
Выразим золото в обоих случаях, так как оно через умножение будет (это удобнее)
Что такое масса сплава
Для конкретных сплавов это:
Далее составляется новый сплав, который составляется из первого и второго сплава, но возьмутся части от каждого. Пусть эти доли будут равны для первого и второго сплава соответственно.
Общая масса нового сплава будет равна:
Причем суммарная масса золота здесь будет
Первое слагаемое - масса золота в новом сплаве из первого сплава, второе слагаемое - масса золота в новом сплаве из второго сплава.
И вот тут применяем условие, что эти два слагаемых равны, то есть
Вспомним, какие будут массы первого и второго сплава в новом сплаве и найдем их отношение.
Из заданных можно лишь сказать, что оба сомножителя будут больше единицы, так что и все произведение будет больше единицы, то есть масса первого сплава должна быть больше.
UPD. Дорешивал я уже задачу, где массы золота в новом сплаве равны (изначально недопонял условие)
Но нестрашно. Тоже полезно. Теперь дорешаем нашу задачу. В ней равны массы золота и серебра в новом сплаве.
Общая масса золота в новом сплаве это
Общая масса серебра в новом сплаве это
И известно, что эти массы равны. Логика та же: приравнять, выразить и подставить.
Замечательно. Только для удобства обозначим
Вспоминаем, что
А вот здесь как раз вполне можно использовать знание, что и поменять знаки одновременно в скобках с вычитанием как в числителе, так и в знаменателе и тогда
Как-то так.