В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Daria151814
Daria151814
24.01.2020 02:54 •  Алгебра

Запишите выражение для степени

Показать ответ
Ответ:
Maaaaaria122
Maaaaaria122
27.03.2020 13:23
Найдем точку пересечения функции x²-2x+3 с осью х
x²-2x+3=0
D=2²-4*3=4-12=-8
Корней нет. Следовательно, с осью х не пересекается
Ищем точку пересечения с осью у
х=0   y=0²+2*0+3=3
(0;3) - искомая точка
Находим производную
y'=2x-2
y'(x₀)=2*0-2=-2
Уравнение касательной общем виде
y = f(x₀) + f '(x₀)(x – x₀))
y=3-2(x-0)
y=3-2x
ответ: y=-2x+3 (наверно, это ответ С, там опечатка)

у=1/2x^2 - 2x + 6/7
y'=x-2
x-2=0
x=2
ответ: 2 (D)

 f (x) = x+1/x-1 проведенной в точке М (2;3).
 f (x) = x+x⁻¹-1
 f '(x) = 1-x⁻²
 x₀=2
 f '(2) = 1-2⁻²=1-1/4=3/4=0.75
 f (2)=2+1/2-1=3/2=1.5
Уравнение касательной общем виде
y = f(x₀) + f '(x₀)(x – x₀))
y=1.5+0.75(x-2)
y=1.5+0.75x-1.5
y=0.75x 
ответ: y=0.75x (вообще ничего похожего нет!)
Это потому что т.М не принадлежит данной кривой - ее координаты не удовлетворяют данному уравнению

Наверно, я не так условие понял. Ну-ка, попробуем по-другому
 f (x) = (x+1)/(x-1) проведенной в точке М (2;3).
 x₀=2
 f (x₀) = (2+1)/(2-1)=3 (Да, теперь подходит)
f '(x) = [(x+1)'(x-1)-(x+1)(x-1)']/(x-1)²=(x-1-(x+1))/(x-1)²=-2/(x-1)²
f '(2)=-2/(2-1)²=-2
Уравнение касательной общем виде
y = f(x₀) + f '(x₀)(x – x₀))
y=3-2(x-2)
y=3-2x+4
y=7-2x
ответ: y=7-2x (все-равно, нет такого ответа)
0,0(0 оценок)
Ответ:
rtrc2002
rtrc2002
06.11.2021 16:58

Это парабола y=x^2+4x. При у=0 получаем x^2+4*x=0, x(1)=0, x(2)=-4. При этих значениях парабола пересекает ось Х. По этим данным уже можно построить параболу. Ось параболы - прямая, параллельная оси У, проходит через точку (-2;0). 
А вообще, методика такая: 
Выделяется полный квадрат, вида у=(х-а)^2+b. 
Для этого берется формула (x+a)^2 или (x-a)^2, знак зависит от знака члена с первой степенью х, в данном случае +4, значит берем формулу с плюсом, и развертываем ее: 
(x+a)^2=x^2+2*x*a+a^2. 
Сопоставляем члены с первой степенью х в развернутой формуле и в исходной функции. 
Видим, что 2*х*а=4*х, значит а=2. 
К исходной формуле добавляем a^2, а чтобы значение не изменилось, вычитаем a^2. 
y=x^2+4x+2^2-2^2 
y=(x^2+2*x*2+2^2)-4 
y=(x+2)^2-4 
Из полученного выражения определяем, что ось параболы проходит через точку (-2;0) (-2 получается из выражения (х+2)^2, берем с противоположным знаком). 
Свободный член (-4) означает, что минимальное значение у=-4, то есть вершина параболы находится на оси параболы в точке (-2;-4). 
Легко запомнить 0^2=0, (+-1)^2=1, (+-2)^2=4, (+-3)^2=9, остальные значения обычно не требуются. 
Строишь по этим значениям параболу с вершиной в начале координат, затем смещаешь ее влево или вправо, вверх или вниз на нужное число единиц. В данной задаче на 2 клетки влево и на 4 клетки вниз

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота