1) В треугольнике против большей стороны лежит больший угол . В треугольнике ABC большая сторона AB против этой стороны лежит <C, значит <C = 120° . Сумма углов в треугольнике равна 180° , значит третий неизвестный угол треугольника равен 180 - (120 + 40) = 180 - 160 = 20°. AC - меньшая сторона треугольника против неё лежит <B , значит <B = 20° Против стороны BC лежит <A, значит < A = 40°.
2) <A = 50° , <B = x , <C = 12x Сумма углов в треугольнике равна 180° , значит 50 + x + 12x = 180 13x = 130 x = 10° - <B 12 * 10 = 120° - < C
3) A| | | D | C| B
<C = 90° , <B = 35° Сумма острых углов в прямоугольном треугольнике равна 90°, значит <A = 90° - <B = 90° - 35° = 55° В треугольнике ACD , <ADC = 90° , так как CD - высота <ACD = 90° - <A = 90° - 55° = 35° ответ : 35° , 55° , 90°
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
В треугольнике ABC большая сторона AB против этой стороны лежит <C,
значит <C = 120° . Сумма углов в треугольнике равна 180° , значит третий неизвестный угол треугольника равен 180 - (120 + 40) = 180 - 160 = 20°.
AC - меньшая сторона треугольника против неё лежит <B , значит <B = 20°
Против стороны BC лежит <A, значит < A = 40°.
2) <A = 50° , <B = x , <C = 12x
Сумма углов в треугольнике равна 180° , значит
50 + x + 12x = 180
13x = 130
x = 10° - <B
12 * 10 = 120° - < C
3)
A|
|
| D
|
C| B
<C = 90° , <B = 35°
Сумма острых углов в прямоугольном треугольнике равна 90°, значит
<A = 90° - <B = 90° - 35° = 55°
В треугольнике ACD , <ADC = 90° , так как CD - высота
<ACD = 90° - <A = 90° - 55° = 35°
ответ : 35° , 55° , 90°
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: