2) Условно примем, что хорда АВ разделилась на отрезки АМ=25 см и ВМ=36 см. Тогда отношение частей хорды CD будет равно СМ/MD=1/4. Отрезки двух хорд связаны: произведение отрезков одной хорды равно произведению отрезков другой хорды.
Примем за х одну часть. Тогда СМ будет равен х, а MD - 4х. Составляем уравнение:
25*36=х*4х
900=4х^2
х^2=900/4
х^2=225
х=15
Находим 4х:
4*15=60 см.
Длина второй хорды равна 15+60=75 см. Следовательно, верный ответ 4 - 75 см.
3) Верный высказывания: 2 и 3.
Второе высказывание верно, потому что при делении числа на два не может быть двух разных результатов.
Третье высказывание верно, потому что градусная мера полуокружности равна 180 градусам, а вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, вписанный угол, опирающийся на полуокружность, будет равен 180/2=90 градусов.
4) Определение вписанного угла: угол, стороны которого пересекают окружность, а вершина лежит на окружности, является вписанным. Следовательно, нужными пунктами будут 1 и 5.
5) Вписанными углами будут являться углы под номерами 1, 2 и 5.
6) Угол ABC - вписанный, значит градусная мера дуги, на которую он опирается, будет равна удвоенной градусной мере угла: 44*2=88 градусов.
Также указано, что дуга AB равна 92 градуса. Учитывая то, что вся окружность равняется 360 градусам, составляем уравнение:
Дуга BC=360-(88+92)
Дуга BC=360-180
Дуга ВС=180 градусов.
7) Из рисунка видно, что BC - это диаметр, следовательно, дуга BAC будет равна 180 градусов. Известно, что часть дуги ВАС - дуга ВА равна 100 градусам, значит вторая часть - дуга АС будет равна 180-100=80 градусов.
Угол ABC - вписанный, значит его градусная мера равна половине градусной меры дуги, на которую он опирается: 80/2=40 градусов.
8) Дуги АВ и ВС соприкасаются в точке В, значит дуга АВ+дуга ВС=дуга АВС; 152+80=232 градусов.
Дуга АС равна 360- 232= 128 градусов.
Угол AВС - вписанный, значит его градусная мера равна 128/2=64 градуса.
Посмотрим, чему может равняться число . Так как выражение "- EEE - AA + R" больше или равно - 1086 (= - 999 - 88 + 1), то должно быть довольно близко к 2017. 3333 и 1111 не подходят, значит = 2222.
Теперь обратим внимание на число EEE. Пусть оно равно 222 или больше. Тогда у нас получится 2222 - 222 = 2000 или меньше. Теперь от этого числа нужно отнять некоторое двузначное и прибавить однозначное, то есть еще уменьшить число. Но так невозможно будет получить 2017. Значит, EEE = 111.
Мы имеем: 2222 - 111 = 2111. Если мы отнимем 94, то получим ровно 2017, но тогда R = 0 (ненатуральное). Тогда мы можем подставить A = 95, 96, 97, 98, 99 и получим соответственно R = 1, 2, 3, 4, 5. Но А должно состоять из одной цифры, так что A = 99, R = 5.
Примечание:
При решении ребуса мы учитывали то, что все числа являются натуральными, и не повторяются (то есть Y не может быть равно R и т. д.).
1) Установить соответствие:
Угол ABC опирается на дугу ADC
Угол DEF опирается на дугу DCF
Угол AGF опирается на дугу ACF
2) Условно примем, что хорда АВ разделилась на отрезки АМ=25 см и ВМ=36 см. Тогда отношение частей хорды CD будет равно СМ/MD=1/4. Отрезки двух хорд связаны: произведение отрезков одной хорды равно произведению отрезков другой хорды.
Примем за х одну часть. Тогда СМ будет равен х, а MD - 4х. Составляем уравнение:
25*36=х*4х
900=4х^2
х^2=900/4
х^2=225
х=15
Находим 4х:
4*15=60 см.
Длина второй хорды равна 15+60=75 см. Следовательно, верный ответ 4 - 75 см.
3) Верный высказывания: 2 и 3.
Второе высказывание верно, потому что при делении числа на два не может быть двух разных результатов.
Третье высказывание верно, потому что градусная мера полуокружности равна 180 градусам, а вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, вписанный угол, опирающийся на полуокружность, будет равен 180/2=90 градусов.
4) Определение вписанного угла: угол, стороны которого пересекают окружность, а вершина лежит на окружности, является вписанным. Следовательно, нужными пунктами будут 1 и 5.
5) Вписанными углами будут являться углы под номерами 1, 2 и 5.
6) Угол ABC - вписанный, значит градусная мера дуги, на которую он опирается, будет равна удвоенной градусной мере угла: 44*2=88 градусов.
Также указано, что дуга AB равна 92 градуса. Учитывая то, что вся окружность равняется 360 градусам, составляем уравнение:
Дуга BC=360-(88+92)
Дуга BC=360-180
Дуга ВС=180 градусов.
7) Из рисунка видно, что BC - это диаметр, следовательно, дуга BAC будет равна 180 градусов. Известно, что часть дуги ВАС - дуга ВА равна 100 градусам, значит вторая часть - дуга АС будет равна 180-100=80 градусов.
Угол ABC - вписанный, значит его градусная мера равна половине градусной меры дуги, на которую он опирается: 80/2=40 градусов.
8) Дуги АВ и ВС соприкасаются в точке В, значит дуга АВ+дуга ВС=дуга АВС; 152+80=232 градусов.
Дуга АС равна 360- 232= 128 градусов.
Угол AВС - вписанный, значит его градусная мера равна 128/2=64 градуса.
2222 - 111 - 99 + 5 = 2017.
Посмотрим, чему может равняться число . Так как выражение "- EEE - AA + R" больше или равно - 1086 (= - 999 - 88 + 1), то должно быть довольно близко к 2017. 3333 и 1111 не подходят, значит = 2222.
Теперь обратим внимание на число EEE. Пусть оно равно 222 или больше. Тогда у нас получится 2222 - 222 = 2000 или меньше. Теперь от этого числа нужно отнять некоторое двузначное и прибавить однозначное, то есть еще уменьшить число. Но так невозможно будет получить 2017. Значит, EEE = 111.
Мы имеем: 2222 - 111 = 2111. Если мы отнимем 94, то получим ровно 2017, но тогда R = 0 (ненатуральное). Тогда мы можем подставить A = 95, 96, 97, 98, 99 и получим соответственно R = 1, 2, 3, 4, 5. Но А должно состоять из одной цифры, так что A = 99, R = 5.
Примечание:
При решении ребуса мы учитывали то, что все числа являются натуральными, и не повторяются (то есть Y не может быть равно R и т. д.).