В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
magauovaalem1
magauovaalem1
30.05.2021 06:59 •  Алгебра

Желательно подробно:
1)x^2 - 9/x^2-4<0
2)(2x^2+3)(x+4)^3>0

Показать ответ
Ответ:
kristina763
kristina763
05.12.2021 14:16

6 и -21

Объяснение:

Перевод: Найти наибольшее и наименьшее значения функции:

y = 2·x³-3·x²-12·x-1

на промежутке [-2; 3].

Решение. Применим алгоритм нахождения наибольшее и наименьшее значения функции на интервале.

1) Находим производную от функции:

y'=(2·x³-3·x²-12·x-1)' =2·(x³)'-3·(x²)'-12·(x)'-(1)' =2·3·x²-3·2·x-12·1-0=6·x²-6·x-12.

2) Находим критические точки функции принадлежащие промежутке [-2; 3]:

y'=0 ⇔ 6·x²-6·x-12=0 ⇔ x²-x-2=0 ⇔ x²-1-x-1=0 ⇔ (x-1)·(x+1)-(x+1)=0 ⇔

⇔ (x-1-1)·(x+1)=0 ⇔ (x-2)·(x+1)=0 ⇒ x₁=2∈[-2; 3], x₂= -1∈[-2; 3].

3) Вычислим значение функции в критических точках из промежутка и на границах промежутка:

y(-2) = 2·(-2)³-3·(-2)²-12·(-2)-1 = -16-12+24-1 = -5;

y(-1) = 2·(-1)³-3·(-1)²-12·(-1)-1 = -2-3+12-1 = 6;

y(2) = 2·2³-3·2²-12·2-1 = 16-12-24-1 = -21;

y(3) = 2·3³-3·3²-12·3-1 = 54-27-36-1 = -10.

4) Выбираем наибольшее и наименьшее значения функции среди значений из пункта 3:

наибольшее - это число 6;

наименьшее - это число -21.

0,0(0 оценок)
Ответ:
dfrt2
dfrt2
28.08.2022 02:53

условно сходится

Объяснение:

Для выяснения сходимости ряда используем признак Лейбница.

a_{n}= \frac{1}{\sqrt{3n+1}}

Очевидно, что

1. a_{1}\geq a_{2}\geq ...\geq a_{n}\geq ..., так как с увеличением номера n увеличивается знаменатель, а с ростом знаменателя дробь становится все меньше и меньше;

2.\lim_{n \to \infty} a_n= \lim_{n \to \infty} \frac{1}{\sqrt{3n+1} }=0

Надеюсь, данный факт ясен.

Два условия выполнены, следовательно, ряд по признаку Лейбница сходится.

Выясним вопрос относительно абсолютной сходимости. Для этого нужно рассмотреть соответствующий ряд из модулей исходного ряда.

Напомню, что модуль "съедает" множитель вида  (-1)^{n+1}. Значит, общий член нового ряда имеет вид u_{n}= \frac{1}{\sqrt{3n+1}}.

Для установления сходимости данного ряда используем интегральный признак Коши. Это можно сделать, поскольку  действительнозначная функция

                    u(x)= \frac{1}{\sqrt{3x+1}}

неотрицательна, непрерывна и убывает на интервале [1,\infty)

Можно рассмотреть несобственный интеграл. Исследуем его на сходимость. подробности в приложенном файле.

Итак,  получена бесконечность, стало быть, несобственный интеграл расходится.

Ряд сходится либо расходится вместе с несобственным интегралом. То есть, расходится.                                   

Таким образом, сам ряд сходится. Но ряд из модулей расходится, что исключает абсолютную сходимость ряда. А сходящийся ряд, не сходящийся абсолютно, сходится условно.


Установить, сходится или расходится знакочередующийся ряд, если сходится, то выяснить каким образом:
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота