1) Вася проезжает за 10 минут (10/60=1/6 часа) 4 круга, т.е. 500*4=2000 м =2 км. v (скорость)= S (расстояние)/t (время)= 2/ (1/6)= 12 км/час – утверждение верно
2) S (расстояние, которое проехал Петя)=500*5=2500 м=2,5 км t(время) = 15 минут=15/60=1/4 часа v = 5*500/(1/4)=2,50/,25= 10 (км/час) - скорость с которой ехал Петя. 20% от 12 равно 2,4 (12*0,2) 12-2,4=9,6 км/час, а Петя ехал с большей скоростью - 10 км/час скорость Васи на 20 % больше скорости Пети - утверждение не верно
3) Скорость сближения: 12+10=22 км/час Расстояние: 500 м=0,5 км Время встречи: t=S/v=0,5/22=1,4 минуты Если Петя и Вася одновременно стартуют из одной точки трека в разных направлениях, то до их встречи с момента старта пройдет больше 1,5 минут – утверждение не верно.
4) 50 минут = 50/60 = 5/6 часа S=v*t=12*5/6=10 (км) – расстояние которое проедет Вася за 50 минут, т.е он проедет 10/0,5= 20 кругов S=v*t=10*5/6=8 (км) - расстояние которое проедет Петя за 50 минут, т.е. он проедет 8/0,5 = 16 кругов. 20-16=4 Если Петя и Вася одновременно стартуют из одной точки трека в одном направлении, то за 50 минут будет четыре обгона – утверждение верно.
Cos^2(x)+cos^2(2x)=cos^2(3x)+cos^2(4x) cos^2(x) - cos^2(3x) = cos^2(4x) - cos^2(2x) далее разность квадратов с обоих сторон (cos(x) - cos(3x))*(cos(x) + cos(3x)) = (cos(4x) - cos(2x))*(cos(4x) + cos(2x)) далее применяем формулы cosa-cosb=-2sin( (a+b)/2 )*sin( (a-b)/2 ) cosa+cosb=2cos( (a+b)/2 )*cos( (a-b)/2 ) получаем, -2sin( (x+3x)/2 )*sin( (x-3x)/2 ) * 2cos( (x+3x)/2 )*cos( (x-3x)/2 ) = = -2sin( (4x+2x)/2 )*sin( (4x-2x)/2 ) * 2cos( (4x+2x)/2 )*cos( (4x-2x)/2 ) слегка, 2-йки сокращаем, имеяя ввиду, что sin(-x)=-sin(x), а cos(-x)=cos(x) sin(2x)*sin(x)*cos(2x)*cos(x)=-sin(3x)*sin(x)*cos(3x)*cos(x) сокращая на sin(x) и cos(x) имеем ввиду, что это также является решением уравнения, т. е. уравнение распадается на три уравнения 1) sin(x)=0, тут x=пk, где k-целое число 2) cos(x)=0, тут x=п/2*k, где k-целое число 3) после сокращения на sinx и cosx sin(2x)cos(2x)=-sin(3x)cos(3x) здесь применяем формулу sin(2x)=2*sin(x)*cos(x), получаем 1/2*sin(4x)=-1/2*sin(6x) sin(4x)+sin(6x)=0 далее применяем формулу sina+sinb=2sin( (a+b)/2 )*cos( (a-b)/2 ), получаем 2sin( (4x+6x)/2 )*cos( (4x-6x)/2 ) = 0 на 2 сокращаем, получаем sin(5x)*cos(x) = 0 cos(x)=0 у нас уже имелось в пункте 2) остается sin(5x)=0 => 5x=пk => x=п/5*k, k - целое объединяем решения: 1)x=пk, где k-целое число 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое третье включает в себя первое, можно на тригонометрическом круге посмотреть, если так не понятно, поэтому остается 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое число дальше мудохаться не стоит, ответ: x=п/2*k, где k-целое число и x=п/5*k,где k - целое число p.s. п-это пи=3.1415 если что (число эйлера вроде как)
v (скорость)= S (расстояние)/t (время)= 2/ (1/6)= 12 км/час – утверждение верно
2) S (расстояние, которое проехал Петя)=500*5=2500 м=2,5 км
t(время) = 15 минут=15/60=1/4 часа
v = 5*500/(1/4)=2,50/,25= 10 (км/час) - скорость с которой ехал Петя.
20% от 12 равно 2,4 (12*0,2)
12-2,4=9,6 км/час, а Петя ехал с большей скоростью - 10 км/час
скорость Васи на 20 % больше скорости Пети - утверждение не верно
3) Скорость сближения: 12+10=22 км/час
Расстояние: 500 м=0,5 км
Время встречи:
t=S/v=0,5/22=1,4 минуты
Если Петя и Вася одновременно стартуют из одной точки трека в разных направлениях, то до их встречи с момента старта пройдет больше 1,5 минут – утверждение не верно.
4) 50 минут = 50/60 = 5/6 часа
S=v*t=12*5/6=10 (км) – расстояние которое проедет Вася за 50 минут, т.е он проедет 10/0,5= 20 кругов
S=v*t=10*5/6=8 (км) - расстояние которое проедет Петя за 50 минут, т.е. он проедет 8/0,5 = 16 кругов.
20-16=4
Если Петя и Вася одновременно стартуют из одной точки трека в одном направлении, то за 50 минут будет четыре обгона – утверждение верно.