Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО
Итак, пусть у нас есть два натуральных числа. Обозначим их x и y. Пусть y это меньшее из них, тогда по условию x - y = 7;
X*y = 18
Составим систему линейных уравнений с двумя переменными:
{x - y = 7
{x*y = 18
Решим Ее методом подстановки. Выразим из первого выражения y:
{y = x - 7
{xy = 18
Подставим в первое выражение вместо х то что у нас получилось во 2 выражении. И найдём y
{y = x - 7
{x(x-7)=18
{y = x - 7
{x^2 - 7x = 18 => x^2 - 7x - 18 = 0; ( решим по теореме виета ) x1 = 9; -2. Корень -2 не является натуральным числом, значит не удовлетворяет условию задачи
y = 9 - 7 = 2
решением является пара чисел (9 ; 2). Но это в сестеме, а в самой задаче просто 2; 9
ответ : 2;9.