Знак "/" это
контрольная работа №3
по теме «квадратные корни»
2 вариант
1. h
1. найти значение выражения:
a) 4 /0,81
б) /2500 - /625
b) 64
г) /6 - 2у, при у=!
2. решите уравнение:
a) - 5 4
б) = 18
3. вычислите:
a) - 2/10
б) 2.5 ((-0,1)
b) /12
д) /49 25
e) /0, 16-36
Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d)
a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему:
{a1+a1+5d=11 a1+d+a1+3d=10
{2a1+5d=11 2a1+4d=10
Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым:
{-2a1-5d=-11 + 2a1+4d=10
-d=-1
d=1
2a1+4=10
a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.)
По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии:
S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n)
ответ:33
Пусть скорость медленного гонщика составляет км/мин.
Раз быстрый гонщик обогнал впервые медленного через 48 минут, то с таким же успехом, мы можем переформулировать это утверждение и так: быстрый гонщик через 48 минут опережал медленного на 8 км (длину одного круга). А значит, их относительная скорость удаления составляет: км/мин.
Из найденного следует, что скорость быстрого гонщика мы можем записать, как: км/мин.
Сказано, что медленный гонщик ехал на 17 минут дольше, а значит, если мы вычтем из времени в пути медленного гонщика время в пути быстрого гонщика, то эта разность и должна составить 17 минут. Ясно, что время в пути для каждого гонщика мы можем найти, разделив полный путь трассы на скорость каждого из них, тогда:
Поскольку так, как это скорость,
направленная в заданную сторону (вперёд), то:
Это и есть скорость второго (медленного) гонщика.
Осталось только перевести её в км/ч:
15/6 км/мин = 15 км : 6 мин = 150 км : 60 мин = 150 км : час = 150 км/час.
О т в е т : 150 км.