1,7 дм; 5,1 дм; 4 дм
Объяснение:
1) вводим неизвесную.
пусть та сторона, что в задаче названа "одна" будет х
2) строим зависимости х от других элементов.
тогда сторона, от которой "одна меньше в 3 раза" будет 3х
сторона, "одна меньше от третьей на 2,3 дм" будет х + 2,3
периметр = сумма трех сторон.
3) составляем уравнение
х + 3х + (х+2,3) = 10,8
4) решаем уравнение
5х = 8,5
х = 1,7
5) находим стороны 2 и 3
3х = 5,1
х+2,3 = 4
6) делаем проверку 1,7 + 5,1 + 4 = 10,8 - сходится.
7) оформляем ответ
прим.: не надо система там, где можно обойтись просто уравнением
Разберем все по порядку:
1 утверждение неверно, верным будет утвержение "Вписанные углы, опирающиеся на одну и ту же дугу окружности, равны."
2.верное утверждение
3.Неверно! Если при пересечении двух прямых секущей сумма односторонних углов равна 180 градусов, то прямые параллельны.
Верно только 2
ответ: 2
Выберете верное утверждение :
1. вписанные углы, опирающиеся на одну и ту же дугу, имеют разные градусные меры
2. если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
3. если при пересечении двух прямых секущей сумма односторонних углов равна 360 градусов, то прямые параллельны
1,7 дм; 5,1 дм; 4 дм
Объяснение:
1) вводим неизвесную.
пусть та сторона, что в задаче названа "одна" будет х
2) строим зависимости х от других элементов.
тогда сторона, от которой "одна меньше в 3 раза" будет 3х
сторона, "одна меньше от третьей на 2,3 дм" будет х + 2,3
периметр = сумма трех сторон.
3) составляем уравнение
х + 3х + (х+2,3) = 10,8
4) решаем уравнение
х + 3х + (х+2,3) = 10,8
5х = 8,5
х = 1,7
5) находим стороны 2 и 3
3х = 5,1
х+2,3 = 4
6) делаем проверку 1,7 + 5,1 + 4 = 10,8 - сходится.
7) оформляем ответ
прим.: не надо система там, где можно обойтись просто уравнением
Разберем все по порядку:
1 утверждение неверно, верным будет утвержение "Вписанные углы, опирающиеся на одну и ту же дугу окружности, равны."
2.верное утверждение
3.Неверно! Если при пересечении двух прямых секущей сумма односторонних углов равна 180 градусов, то прямые параллельны.
Верно только 2
ответ: 2
Объяснение:
Выберете верное утверждение :
1. вписанные углы, опирающиеся на одну и ту же дугу, имеют разные градусные меры
2. если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
3. если при пересечении двух прямых секущей сумма односторонних углов равна 360 градусов, то прямые параллельны