1. снование равно 12,8, так треугольник равнобедренный, а боковая сторона равна 8
2. По признаку о равнобедренном треугольнике, что высота проведенная из вершины угла, является и биссектрисой и медианой, так как высота это медиана, то получается что высота делит треугольник пополам.
Во-первых, область определения { 4 - x^2 >= 0, отсюда x = [-2; 2] { -y + √(4 - x^2) >= 0, отсюда y <= √(4 - x^2); y^2 <= 4 - x^2; y^2 + x^2 <= 4; y = [-2; 2] Это область внутри круга с центром О(0; 0) и радиусом 2. Во-вторых, решаем систему { x*y = a { y + 2 - |x| >= 0, отсюда |x| <= y + 2, учитывая обл. опр, это будет верно всегда. { x*y*√(-y - √(4 - x^2)) >= 0 В третьем неравенстве корень арифметический, то есть неотрицательный. Значит, есть два варианта: 1) -y - √(4 - x^2) = 0 √(4 - x^2) = -y (x1 = -2; y1 = 0); (x2 = 2; y2 = 0); (x = 0; y = -2). Во всех трех случаях а = xy = 0.
Это и будет единственное решение, при котором система имеет 3 корня.
1. снование равно 12,8, так треугольник равнобедренный, а боковая сторона равна 8
2. По признаку о равнобедренном треугольнике, что высота проведенная из вершины угла, является и биссектрисой и медианой, так как высота это медиана, то получается что высота делит треугольник пополам.
3. Мы получили прямоугольный треугольник
По теореме Пифагора находим высоту, то есть:
а^2+в^2=с^2 (где а и в-катеты, а с-гипотенуза)
пусть в-Х,
а=1/2 основная, что равно 6,4
с-боковая сторона, что по условию равно 8
подставим числа
8^2=6,4^2+х^2
64=40,96+х^2
х^2=23,04
х=4,8
{ 4 - x^2 >= 0, отсюда x = [-2; 2]
{ -y + √(4 - x^2) >= 0, отсюда y <= √(4 - x^2); y^2 <= 4 - x^2; y^2 + x^2 <= 4; y = [-2; 2]
Это область внутри круга с центром О(0; 0) и радиусом 2.
Во-вторых, решаем систему
{ x*y = a
{ y + 2 - |x| >= 0, отсюда |x| <= y + 2, учитывая обл. опр, это будет верно всегда.
{ x*y*√(-y - √(4 - x^2)) >= 0
В третьем неравенстве корень арифметический, то есть неотрицательный.
Значит, есть два варианта:
1) -y - √(4 - x^2) = 0
√(4 - x^2) = -y
(x1 = -2; y1 = 0); (x2 = 2; y2 = 0); (x = 0; y = -2). Во всех трех случаях а = xy = 0.
Это и будет единственное решение, при котором система имеет 3 корня.