Я так думаю, здесь всё объединено?! Короче, попробуем решить алгебраическим это когда первый пример + второй пример). Для этого, умножим первый пример на -1 {y - x = 9 |*(-1) {7y - x = - 3 Получаем: { -у +х = -9 { 7у - х = -3 Условно ставим между этими примерами знак "+", крч прибавляем. Т.к. значения х (иксов) противоположные - они само-уничтожаются. Выходит: 6у = -12 у = -12 : 6 у = -2 Ура! Нашли значение у (игрика), теперь просто подставляешь это значение в любой пример и находишь х (икс). Например, в первый пример: {у - х = 9 {у = -2 -2 - х = 9 -х = 9+2 {х = -11 {у= -2 ответ: (-11; - 2) P.S. пыталась максимально доступно объяснить.
Действительные числа Множество действительных чисел - это вместе взятые множества рациональных и иррациональных чисел.
Действительное число или как его еще называют вещественное число - это любое положительное число, отрицательное число или нуль.
Действительные числа разделяются на рациональные и иррациональные.
Вещественные (действительные) числа - это своего рода математическая абстракция, служащая для представления физических величин. Такие числа могут быть интуитивно представлены как отношение двух величин одной размерности, или описывающие положение точек на прямой. Множество вещественных чисел обозначается и часто называется вещественной или числовой прямой. Формально вещественные числа состоят из более простых объектов таких, как целые и рациональные числа.
Короче, попробуем решить алгебраическим это когда первый пример + второй пример). Для этого, умножим первый пример на -1
{y - x = 9 |*(-1)
{7y - x = - 3
Получаем:
{ -у +х = -9
{ 7у - х = -3
Условно ставим между этими примерами знак "+", крч прибавляем. Т.к.
значения х (иксов) противоположные - они само-уничтожаются. Выходит:
6у = -12
у = -12 : 6
у = -2
Ура! Нашли значение у (игрика), теперь просто подставляешь это значение в любой пример и находишь х (икс). Например, в первый пример:
{у - х = 9
{у = -2
-2 - х = 9
-х = 9+2
{х = -11
{у= -2
ответ: (-11; - 2)
P.S. пыталась максимально доступно объяснить.
Множество действительных чисел - это вместе взятые множества рациональных и иррациональных чисел.
Действительное число или как его еще называют вещественное число - это любое положительное число, отрицательное число или нуль.
Действительные числа разделяются на рациональные и иррациональные.
Вещественные (действительные) числа - это своего рода математическая абстракция, служащая для представления физических величин. Такие числа могут быть интуитивно представлены как отношение двух величин одной размерности, или описывающие положение точек на прямой. Множество вещественных чисел обозначается и часто называется вещественной или числовой прямой. Формально вещественные числа состоят из более простых объектов таких, как целые и рациональные числа.
Множество действительных чисел обозначается - R