Наша функция содержит знак модуля. Следовательно, необходимо рассмотреть две ситуации: 1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз, вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх. Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный. 2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх, вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.
Т. к исходный график параллелен прямой у=3х-1 , значит, в исходной формуле к=3, так как график проходит через точку м(2; 1), то можно подставить в формулу у=кх+b вместо х и у значения 2 и 1 соответственно и k=3, получаем: 1=3*2+b 1=6+b b=-5 y=3x-5чертим систему координат, отмечаем положительные направления стрелками вправо и вверх, подписываем оси вправо - х, вверх -у. отмечаем начало координат - точка о и единичные отрезки по каждой оси в 1 клетку. графиком является прямая, для её построения достаточно двух точек, запишем их координаты в таблицу: х= 0 3 у= -5 1 ставим координаты в системе и проводим через них прямую линию. подписываем график у=3х-5.
1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз,
вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх.
Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный.
2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх,
вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.