Раз прямая является касательной, значит есть точка пересечения, поэтому приравниваем эти два уравнения 28x^2+bx+15=-5x+8 28x^2+(b+5)x+7=0 раз точка касания единственная, значит дескриминант должен равен нулю D=b^2+10b-759 =0 решаем получаем 2 корня b1=-33, b2=23 подставляем в уравнение графика y1=28x^2-33x+15 и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем -5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая -5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
28x^2+bx+15=-5x+8
28x^2+(b+5)x+7=0
раз точка касания единственная, значит дескриминант должен равен нулю
D=b^2+10b-759 =0
решаем получаем 2 корня b1=-33, b2=23
подставляем в уравнение графика y1=28x^2-33x+15
и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем
-5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая
-5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
Значит ответ в=-33. Конец
Значит,скорость по течению равна x + 1
скорость против течения равна x - 1
расстояние одинаковое 6 км
Находим время:
по течению 6 / (x + 1)
против течения 6/ ( x - 1)
4ч 30 мин. = 4 1/2 часа = 9/2
Составим уравнение:
6/(x+ 1) + 6/(x - 1) = 9/2
(6x - 6 + 6x + 6) / (x - 1)(x+ 1) =9/2
12x / (x² - 1) = 9/2
9( x² - 1) = 12x × 2
9x² - 9 = 24x
9x² - 24x - 9 = 0
3x² - 8x - 3 = 0
D = b² - 4ac = 64 - 12×(-3)= 64 + 36 = 100 = 10²
x1 = ( 8 + 10) / 6 = 3
x2 = ( 8 - 10) / 6 = - 1/3 - меньше нуля - не подходит,значит,
собственная скорость байдарки равна 3 км/ч.
ответ: 3 км/ч.