В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
milankagl
milankagl
22.01.2020 03:30 •  Алгебра

Знайдіть значення функції у=4х+3, якщо значення аргумент дорівнює -2

Показать ответ
Ответ:
ferrum4
ferrum4
02.06.2023 21:20
Воспользуемся равенством

tg α – tg β = tg (α – β) (1 + tg α tg β).

Получаем:

tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.

С первым понятно, что делать. Второе:

tg 2x tg 4x = –2,

tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.

Это равенство невозможно.

Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
0,0(0 оценок)
Ответ:
Alyonaa201202
Alyonaa201202
20.02.2023 22:26

Объяснение:

1.Так как количество опытов n = 700 довольно велико, то используем формулы Лапласа.

а) Задано: n = 700, p = 0,35, k = 270.

Найдем P700(270). Используем локальную теорему Лапласа.

Находим:

Значение функции φ(x) найдем из таблицы:

б) Задано: n = 700, p = 0,35, a = 230, b = 270.

Найдем P700(230 < k < 270).

Используем интегральную теорему Лапласа (23), (24). Находим:  

Значение функции Ф(x) найдем из таблицы:

в) Задано: n = 700, p = 0,35, a = 270, b = 700.

Найдем P700(k > 270).

2.Статистическая вероятность обрыва нити в течение часа равна p = 10/100 = 0,1 и, следовательно, q = 1 – 0,1 = 0,9; n = 80; k = 7.

Поскольку n велико, то используется локальная теорема Лапласа (23). Вычисляем:

Воспользуемся свойством φ(-x) = φ(x), находим φ(0,37) ≈ 0,3726, а затем вычисляем искомую вероятность:

Таким образом, вероятность того, что в течение часа на 80 веретенах произойдет 7 обрывов нити, приближенно равна 0,139.

Наивероятнейшее число k0 наступлений события при повторных испытаниях определим по формуле (14). Находим: 7,1 < k0 < 8,1. Поскольку k0 может быть только целым числом, то k0 = 8.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота