Сторона квадрата равна корень из его площади ( по формуле ) , значит его стороны по 4 см . Если расположить квадраты вдоль прямоугольника , чтобы они не касались друг друга , то длинна прямоугольника должна быть равна = 4+4+4 = 12 , а у нас длинна прямоугольника равна 10 . Если расположить квадраты в высоту ( по ширине прямоугольника ) , то ширина должна быть равна тоже 12 см ( чтобы квадраты не накладывались друг на друга ) , а у нас высота ( ширина ) = 4 см . Значит хотя бы 2 квадрата накладываются друг на друга :)
Чертим чертёж. По нему видим, что искомая фигура ограничена параболой симметричной относительно оси ОХ и прямой. Для проведения расчётов преобразуем наши уравнения относительно х: y²=2x+1 x=(y²-1)/2 y=x-1 x=y+1 По чертежу пределы интегрирования [-1;3]. Их можно найти и аналитически решив уравнение: (y²-1)/2=y+1 y²-1=2(y+1) y²-1=2y+2 y²-2y-3=0 D=(-2)²-4*(-3)=4+12=16 y=(2-4)/2=-1 y=(2+4)/2=3 График функции x=y+1 расположен выше графика функции x=(y²-1)/2, поэтому площадь фигуры находится по формуле:
y²=2x+1 x=(y²-1)/2
y=x-1 x=y+1
По чертежу пределы интегрирования [-1;3]. Их можно найти и аналитически решив уравнение:
(y²-1)/2=y+1
y²-1=2(y+1)
y²-1=2y+2
y²-2y-3=0
D=(-2)²-4*(-3)=4+12=16
y=(2-4)/2=-1 y=(2+4)/2=3
График функции x=y+1 расположен выше графика функции x=(y²-1)/2, поэтому площадь фигуры находится по формуле:
ед².