№1 а) 5x-8.5=0 б)8x-7.5=6x+1.5
5x=0+8.5 8x-6x=1.5+7.5
5x=8.5 2x=9
x=8.5/5 x=9/2
x=1,7 x=4.5
в)4x-(9x-6)=46 г)(x-2.5)*(5+x)=0
4x-9x+6=46 x-2.5*5+x=0
-5x=46-6 2x=12.5
x=40/-5 x=12.5/2
x=-8 x=6.25
д) 2х/5=(х-3)/2 е) 7х-(х+3)=3(2х-1)
2x-x=-3/2*5 нет корней
x=-7.5
№2 х*2+8=6х
2х-6х=-8
-4х=-8
х=-8/-4
х=2
№3
1) х+2х+х+80=3080
4х+80=3080
4х=3080-80
х=3000/4
х=750 ( уч) в первой школе
2)750+80=830 (уч) во второй школе
3)750*2=1500 ( уч) в третьей школе
№4 х+25=2х-16
х-2х=-16-25
х=41 (т) в первом магазине первоначально
41*2=82 (т) во втором магазине первончально
ответ: При діленні сумми цих двох чисел на 11 отримаєм завжди число рівне суммі двох цифер з яких складаються данні числа.
Объяснение: Позначемо двоцифрове число (ab). Де а і b - довільні натуральні числа. Зворотнє двоцифрове число буде мати вигляд: (ba).
Розпишем двоцифрове число (ab) : ab=10×a +b;
Розпишем зворотнє двоцифрове число (ba) : ba=10×b+a;
Тепер запишем сумму цих чисел: ab + ba=(10×a+b) + (10×b+a)=
=10a+b+10b+a=11a+11b=11×(a+b).
Отримана сумма (11×(а+b))/11=(a+b), при діленні на 11 завжди буде рівна суммі цих цифр (a+b) з яких складаються ці числа, при любих
довільних а і b.
Наприклад: 13+31=44;
44/11=4;
Тут а=1, b=3, (a+b)=1+3=4.
№1 а) 5x-8.5=0 б)8x-7.5=6x+1.5
5x=0+8.5 8x-6x=1.5+7.5
5x=8.5 2x=9
x=8.5/5 x=9/2
x=1,7 x=4.5
в)4x-(9x-6)=46 г)(x-2.5)*(5+x)=0
4x-9x+6=46 x-2.5*5+x=0
-5x=46-6 2x=12.5
x=40/-5 x=12.5/2
x=-8 x=6.25
д) 2х/5=(х-3)/2 е) 7х-(х+3)=3(2х-1)
2x-x=-3/2*5 нет корней
x=-7.5
№2 х*2+8=6х
2х-6х=-8
-4х=-8
х=-8/-4
х=2
№3
1) х+2х+х+80=3080
4х+80=3080
4х=3080-80
х=3000/4
х=750 ( уч) в первой школе
2)750+80=830 (уч) во второй школе
3)750*2=1500 ( уч) в третьей школе
№4 х+25=2х-16
х-2х=-16-25
х=41 (т) в первом магазине первоначально
41*2=82 (т) во втором магазине первончально
ответ: При діленні сумми цих двох чисел на 11 отримаєм завжди число рівне суммі двох цифер з яких складаються данні числа.
Объяснение: Позначемо двоцифрове число (ab). Де а і b - довільні натуральні числа. Зворотнє двоцифрове число буде мати вигляд: (ba).
Розпишем двоцифрове число (ab) : ab=10×a +b;
Розпишем зворотнє двоцифрове число (ba) : ba=10×b+a;
Тепер запишем сумму цих чисел: ab + ba=(10×a+b) + (10×b+a)=
=10a+b+10b+a=11a+11b=11×(a+b).
Отримана сумма (11×(а+b))/11=(a+b), при діленні на 11 завжди буде рівна суммі цих цифр (a+b) з яких складаються ці числа, при любих
довільних а і b.
Наприклад: 13+31=44;
44/11=4;
Тут а=1, b=3, (a+b)=1+3=4.