Прямая,все точки которой находятся на равных расстояниях от точек A(4;2) и B(8;8), это перпендикуляр к середине отрезка АВ.
Уравнение АВ: (х - 4)/(8 - 4) =(у - 2)/(8 - 2).
(х - 4)/4 =(у - 2)/6) или (х - 4)/2 =(у - 2)/3.
Или в общем виде Ах + Ву + С = 0.
3х - 12 = 2у - 8,
3х - 2у - 4 = 0. Здесь А = 3, В = -2.
Перпендикулярная прямая имеет вид -Вх + Ау + С1 = 0.
Для определения коэффициента С1 надо подставить координаты точки, принадлежащей этой прямой.
Такая точка - середина АВ (точка Д).
Д = (1/2)(A(4;2) + B(8;8))/2 = (6; 5). Подставляем:
2*6 + 3*5 + С1 = 0,
С1 = -12 - 15 = -27.
ответ: уравнение прямой, все точки которой находятся на равных расстояниях от точек A(4;2) и B(8;8), это 2х + 3у - 27 = 0.
* * * * * * * * * * * * * * * * * * * *
ответ: 10) 5 ; 11) 3 ; 12) 4.
Объяснение:
10) x²+y²+2x+10y+10 ≤ 0 ; x+y+6 ≥ 0 x²+y²+2x+10x+10 ≤ 0 ; x+y+6 ≥ 0 ⇔
⇔(x+1)²+(y+5)² ≤ 4² ( круг с центром в точке (-1; -5) и радиусом R=4) ;
y ≥ -x -5 ( область не ниже прямой y = -x -5 , которая проходит через центр окружности (x+1)²+(y+5)² = 4² . Фигура будет полукруг площадь
которой будет S =πR²/2 = π*4²/2 = 8π . ответ : 5
11) S₁= a² =1² = 1 ; S₂ =√( (a/3)²+(2a/3)² ) = 5a²/9 = 5/9 ; ... ⇒ q = 5/9
S =S₁/(1-5/9) =9S₁/4 =9*1/4 = 2,25 . ответ : 3.
12) 4x³+11x²- 11x - 4= 0 ⇔ 4x³- 4 +11x²-11x = 0⇔ 4(x³- 1) +11x(x-1) = 0 ⇔
4(x- 1)(x² +x+1) +11x(x-1) = 0 ⇔ (x- 1)(4(x² +x+1) +11x) = 0⇔4(x- 1)(4x² +15x+4)
сумма корней будет: x₁ +x₂+x ₃ =x₁ +( x₂+x ₃) =1 +(-15/4) = -11/4 = -2,75 .
ответ : 4.
Прямая,все точки которой находятся на равных расстояниях от точек A(4;2) и B(8;8), это перпендикуляр к середине отрезка АВ.
Уравнение АВ: (х - 4)/(8 - 4) =(у - 2)/(8 - 2).
(х - 4)/4 =(у - 2)/6) или (х - 4)/2 =(у - 2)/3.
Или в общем виде Ах + Ву + С = 0.
3х - 12 = 2у - 8,
3х - 2у - 4 = 0. Здесь А = 3, В = -2.
Перпендикулярная прямая имеет вид -Вх + Ау + С1 = 0.
Для определения коэффициента С1 надо подставить координаты точки, принадлежащей этой прямой.
Такая точка - середина АВ (точка Д).
Д = (1/2)(A(4;2) + B(8;8))/2 = (6; 5). Подставляем:
2*6 + 3*5 + С1 = 0,
С1 = -12 - 15 = -27.
ответ: уравнение прямой, все точки которой находятся на равных расстояниях от точек A(4;2) и B(8;8), это 2х + 3у - 27 = 0.
* * * * * * * * * * * * * * * * * * * *
ответ: 10) 5 ; 11) 3 ; 12) 4.
Объяснение:
10) x²+y²+2x+10y+10 ≤ 0 ; x+y+6 ≥ 0 x²+y²+2x+10x+10 ≤ 0 ; x+y+6 ≥ 0 ⇔
⇔(x+1)²+(y+5)² ≤ 4² ( круг с центром в точке (-1; -5) и радиусом R=4) ;
y ≥ -x -5 ( область не ниже прямой y = -x -5 , которая проходит через центр окружности (x+1)²+(y+5)² = 4² . Фигура будет полукруг площадь
которой будет S =πR²/2 = π*4²/2 = 8π . ответ : 5
11) S₁= a² =1² = 1 ; S₂ =√( (a/3)²+(2a/3)² ) = 5a²/9 = 5/9 ; ... ⇒ q = 5/9
S =S₁/(1-5/9) =9S₁/4 =9*1/4 = 2,25 . ответ : 3.
12) 4x³+11x²- 11x - 4= 0 ⇔ 4x³- 4 +11x²-11x = 0⇔ 4(x³- 1) +11x(x-1) = 0 ⇔
4(x- 1)(x² +x+1) +11x(x-1) = 0 ⇔ (x- 1)(4(x² +x+1) +11x) = 0⇔4(x- 1)(4x² +15x+4)
сумма корней будет: x₁ +x₂+x ₃ =x₁ +( x₂+x ₃) =1 +(-15/4) = -11/4 = -2,75 .
ответ : 4.