1)
2)
3)
1) y=x²+10 - парабола , поднятая на 10 точек вверх, координаты вершины (0;10)
2) y=x²-5 - парабола, на 5 точек вниз, координаты вершины (0;-5)
3) y=(x+7)² - парабола, передвинутая на 7 точек влево, вершина (-7;0)
4) y=(x-8)²-парабола, передвинутая на 8 точек вправо, вершина (8;0)
4) y=x²
1) y=x²+5
2)y=x²-4
3)y=(x-3)²
4)y=(x+6)²
5)
На фото, c Ox пересекается график функции y=x²-4.
Точки пересечения с Ox (-2;0) и (2;0)
И y=x²-1
Точки пересечения с Ox (-1;0) и (1;0)
С Oy : y=x²-1, (0;-1)
y=x²+2,5 , (0;2,5)
y=x²-4, (0;-4)
y=x²+4,5, (0;4,5)
Объяснение:
Нужно заданные формулы представить в виде комбинации из x1+x2 и x1*x2.
A) x1^2 + x2^2 = (x1+x2)^2 - 2*x1*x2
B) x1*x2^3 + x2*x1^3 = x1*x2*(x2^2 + x1^2) = x1*x2*((x1+x2)^2 - 2*x1*x2)
C) x1/x2^2 + x2/x1^2 = (x1^3 + x2^3)/(x1*x2)^2 = (x1+x2)(x1^2-x1*x2+ x2^2)/(x1*x2)^2 = (x1+x2)((x1+x2)^2 - 3*x1*x2)/(x1*x2)^2
D) x1^4 + x2^4 = (x1+x2)^4 - 4x1^2 - 6*x1*x2 - 4x2^2 = (x1+x2)^4 - 4((x1+x2)^2 - 2*x1*x2) - 6*x1*x2.
Теперь остаётся подставить данные из теоремы Виета.
x1+x2 = - b/a = - 8/3
x1*x2 = c/a = - 1/3
A) x1^2 + x2^2 = ((-8/3)^2 - 2(-1/3)) = 64/9 + 2/3 = 64/9 + 6/9 = 70/9
Остальные точно также.
1)
2)
3)
1) y=x²+10 - парабола , поднятая на 10 точек вверх, координаты вершины (0;10)
2) y=x²-5 - парабола, на 5 точек вниз, координаты вершины (0;-5)
3) y=(x+7)² - парабола, передвинутая на 7 точек влево, вершина (-7;0)
4) y=(x-8)²-парабола, передвинутая на 8 точек вправо, вершина (8;0)
4) y=x²
1) y=x²+5
2)y=x²-4
3)y=(x-3)²
4)y=(x+6)²
5)
На фото, c Ox пересекается график функции y=x²-4.
Точки пересечения с Ox (-2;0) и (2;0)
И y=x²-1
Точки пересечения с Ox (-1;0) и (1;0)
С Oy : y=x²-1, (0;-1)
y=x²+2,5 , (0;2,5)
y=x²-4, (0;-4)
y=x²+4,5, (0;4,5)
Объяснение:
Нужно заданные формулы представить в виде комбинации из x1+x2 и x1*x2.
A) x1^2 + x2^2 = (x1+x2)^2 - 2*x1*x2
B) x1*x2^3 + x2*x1^3 = x1*x2*(x2^2 + x1^2) = x1*x2*((x1+x2)^2 - 2*x1*x2)
C) x1/x2^2 + x2/x1^2 = (x1^3 + x2^3)/(x1*x2)^2 = (x1+x2)(x1^2-x1*x2+ x2^2)/(x1*x2)^2 = (x1+x2)((x1+x2)^2 - 3*x1*x2)/(x1*x2)^2
D) x1^4 + x2^4 = (x1+x2)^4 - 4x1^2 - 6*x1*x2 - 4x2^2 = (x1+x2)^4 - 4((x1+x2)^2 - 2*x1*x2) - 6*x1*x2.
Теперь остаётся подставить данные из теоремы Виета.
x1+x2 = - b/a = - 8/3
x1*x2 = c/a = - 1/3
A) x1^2 + x2^2 = ((-8/3)^2 - 2(-1/3)) = 64/9 + 2/3 = 64/9 + 6/9 = 70/9
Остальные точно также.