23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
номер 17
1) х=-1
2) х=2
3) Утверждение ложно для любого значения х.
4) Утверждение верно для любого значения х, потому что обе части одинаковы
5) Утверждение ложно для любого значения х.
номер 27
1) х=16/9
2) Утверждение ложно для любого значения х.
3) х=8/7
4)
5)
6)
Объяснение:
1)
х²+3х+2х+6=х²-х3х+2х+6=-х5х+6=-х5х=-х-65х+х=-66х=-6х=-12)
х²-3х-2х+6=х²+х-6-3х-2х+6=х-6-5х+6=х-6-5х-х+6=-6-5х-х=-6-6-6х=-12х=23)
х²-3х+2х-6=х²-х-3х+2х-6=-х-х-6=-х-6=0Утверждение ложно для любого значения х.4)
Утверждение верно для любого значения х, потому что обе части одинаковы5)
х²-3х+1=х²-3х-3х+1=-3х1=0Утверждение ложно для любого значения х.номер 27
1)
1/5х+х-1=3(х+2):106/5х-1=3х+6:1012х-10=3х+612х-3х-10=612х-3х=6+109х=16х=16/92)
-0,5-1/2=3:6-0,5-1/2=0,5-1/2-1/2=0,5-1=0,5Утверждение ложно для любого значения х.3)
1-1/6х-2(х+2)=1/91-1/6х-2х+4:9=1/918-3х-2(2х+4)=218-3х-4х-8=210-7х=2-7х=2-10-7х=-8х=8/7