Берем первое выражение x6+x5+2x4+2x3+4x2+4x=0 выносим х в третьей степени за скобки х3(х3+х2+2х+2)=0 х3=0 либо (х3+х2+2х+2)=0 х=0 решим получившиеся уравнение х3+х2+2х+2=0 (далее способом группировки,разбиваем многочлен на множители. (х3+2х) +(х2+2)=0) х(х2+2) + 1(х2+2)=0 (х+1)*(х2+2)=0 х+1=0 либо х2+2=0 х= -1 х2=-2 (решений нет) теперь берем второе выражение 3x4+3x3+6x2+6x=0выносим за скобки 3х3х(х3+х2+2х+2)=03х=0 либо х3+х2+2х+2 =0х=0решим получившиеся уравнение х3+х2+2х+2 =0используя способ группировки,мы разбиваем многочлен на множителих(х2+2)+1(х2+2)=0(х+1)*(х2+2)=0х+1=0 либо х2+2=0х= -1 х2= -2(решений нет)общие корни уравнений : 0 и -1.ответ : 0,-1
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z