Знайти ймовірність того, що сума квадратів двох чисел x та y буде не більше одиниці, якщо ці числа мають такі обмеження: x ≤ 1 (-1 ≤ x ≤ 1) y ≤ 1 (-1 ≤ y ≤ 1).
Нет, не может. Почему же? Для начала озвучу правило: корень парной степени из отрицательного числа не добывается, именно поэтому вводится понятие арифметического корня. Но что такое вообще корень? Выражение: найти квадратный корень из числа а, это значит найти такое число, которое бы при умножении самого на себя давало бы а. И так для любой степени. Но почему же все-таки не добывается корень парной степени из отрицательного числа? Продемонстрируем это на простом примере: Например у нас есть уравнение: х^2=25. Решением этого уравнения будет 5 и -5, поскольку оба эти числа будут давать в квадрате 25 (5*5=25, -5*(-5)=25) А теперь решим такое уравнение: sqrt{x}=5 (sqrt - обозначение корня) решение данного уравнения будет 25, поскольку корень из 25 - 5, потому что 5 в квадрате даёт 25 (5*5=25). И решим такое уравнение: sqrt{25}=x, ответ: х=5. Но почему же не +-5? Ведь -5 в квадрате тоже даёт 25. Но нет, именно для этого вводится понятие арифметического корня. Подкоренное выражение не может быть с минусом, для парной степени. Потому что нету такого числа, что умножилось бы само на себя, и дало число с минусом. То у нас два варианта: либо число положительное либо отрицательное. И в ЛЮБОМ случае, при умножении его на себя парное количество раз, будет получатся ПОЛОЖИТЕЛЬНОЕ число: 2*2*2*2=16 (2^4) -2*(-2)*(-2)*(-2)=16=2^4. Поэтому число под корнем не может быть отрицательным, а так же подкопанное выражение не может быть отрицательным. А вот для корней с непарным показателей число может быть и отрицательным: sqrt[3]{-8}=-2 (-2*(-2)*(-2)=-8). Тут у нас может подучился отрицательное число, по сколько отрицательное число, умноженное на себя непарное количество раз, в итоге окажется отрицательным числом. И так, подитожим данным определением: Арифметический корень из неотрицательного числа а - это неотрицательное число, при возведении которого в ту степень, которую имеет корень, получился число а. Иначе говоря: Корень n-ой степени из числа а - это число, n-ая степень которого равна а. Учитывая что это неотрицательное число для корня парной степени. sqrt{-25}=... По определению, ответом должно быть такое число, квадрат которого равен числу под корнем. Но разве есть такое число, квадрат которого даёт отрицательное число? Нет. Квадрат всегда положителен, и все степени парного числа. Я это уже показал на примере. {При умножении числа а на само себя, парное количество раз, мы всегда будет получать неотрицательное число.
Для начала озвучу правило: корень парной степени из отрицательного числа не добывается, именно поэтому вводится понятие арифметического корня.
Но что такое вообще корень? Выражение: найти квадратный корень из числа а, это значит найти такое число, которое бы при умножении самого на себя давало бы а. И так для любой степени. Но почему же все-таки не добывается корень парной степени из отрицательного числа? Продемонстрируем это на простом примере:
Например у нас есть уравнение: х^2=25. Решением этого уравнения будет 5 и -5, поскольку оба эти числа будут давать в квадрате 25 (5*5=25, -5*(-5)=25)
А теперь решим такое уравнение:
sqrt{x}=5 (sqrt - обозначение корня) решение данного уравнения будет 25, поскольку корень из 25 - 5, потому что 5 в квадрате даёт 25 (5*5=25).
И решим такое уравнение: sqrt{25}=x, ответ: х=5. Но почему же не +-5? Ведь -5 в квадрате тоже даёт 25. Но нет, именно для этого вводится понятие арифметического корня. Подкоренное выражение не может быть с минусом, для парной степени. Потому что нету такого числа, что умножилось бы само на себя, и дало число с минусом. То у нас два варианта: либо число положительное либо отрицательное. И в ЛЮБОМ случае, при умножении его на себя парное количество раз, будет получатся ПОЛОЖИТЕЛЬНОЕ число: 2*2*2*2=16 (2^4) -2*(-2)*(-2)*(-2)=16=2^4. Поэтому число под корнем не может быть отрицательным, а так же подкопанное выражение не может быть отрицательным.
А вот для корней с непарным показателей число может быть и отрицательным: sqrt[3]{-8}=-2 (-2*(-2)*(-2)=-8). Тут у нас может подучился отрицательное число, по сколько отрицательное число, умноженное на себя непарное количество раз, в итоге окажется отрицательным числом.
И так, подитожим данным определением: Арифметический корень из неотрицательного числа а - это неотрицательное число, при возведении которого в ту степень, которую имеет корень, получился число а.
Иначе говоря: Корень n-ой степени из числа а - это число, n-ая степень которого равна а. Учитывая что это неотрицательное число для корня парной степени.
sqrt{-25}=... По определению, ответом должно быть такое число, квадрат которого равен числу под корнем. Но разве есть такое число, квадрат которого даёт отрицательное число? Нет. Квадрат всегда положителен, и все степени парного числа. Я это уже показал на примере.
{При умножении числа а на само себя, парное количество раз, мы всегда будет получать неотрицательное число.
m1v0² = m2v2² + m1v1²
перепишем в более удобном виде
m1v0 - m1v1 = m2v2 (1)
m1v0² - m1v1² = m2v2² (2)
разделим (2) на (1):
v0 + v1 = v2
теперь составляем системку (одно выражение для v1 из верхнего уравнения, другое из (1))
v1 = v2 - v0
v1 = (m1v0 - m2v2)/m1
приравниваем сии выражения:
m1v2 - m1v0 = m1v0 - m2v2,
v2 (m1 + m2) = 2 m1v0,
v2 = (2 m1v0) / (m1 + m2).
если бы мы составляли систему для v1, а затем найденное выражение подставляли в v2, то получили бы:
v2 = v0 (1 + (m1 - m2)/(m1 + m2)).