В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
celentano1
celentano1
09.05.2021 09:53 •  Другие предметы

У трикутнику ABC відомо, що АВ = ВС, ∟A = 60°, кут BCD суміжний iз кутом АСВ, СМ - бісектриса кута BCD. Доведіть, що АВ ‖ СМ

Показать ответ
Ответ:
Braīŋľÿ
Braīŋľÿ
17.04.2019 01:10
Доведения:
Нехай дано ∆АВС, АВ = ВС, ∟A = 60°, ∟BCD - суміжний з ∟ACB,
СМ - бісектриса ∟BCD. Доведемо, що АВ ‖ СМ.
Розглянемо ∆АВС - рівнобедрений (АВ = ВС),
тоді ∟BAC = ∟BCA = 60° (як кути при ocновi ∆АВС).
∟ACB + ∟BCD = 180° (як суміжні), ∟BCD = 180° - 60° = 120°.
∟BCM = ∟MCD = 1/2∟BCD = 120° : 2 = 60° (СМ - бісектриси ∟BCD).
∟ВАС = ∟MCD = 60°, цi кути є відповідними при прямих АВ, CM i cічнй AD.
Tоді за ознакою паралельності прямих АВ ‖ СМ.
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота