В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
DIPPER1112
DIPPER1112
25.06.2021 04:20 •  Другие предметы

В параллелограмме ABCD точки M и N середины сторон BC и CD, вектор AB = вектору a, вектор AD= вектору b. a) Выразите векторы AN и DM через векторы a и b.
б) Докажите что векторы DB и MN коллинеарны. ​


В параллелограмме ABCD точки M и N середины сторон BC и CD, вектор AB = вектору a, вектор AD= вектор

Показать ответ
Ответ:
Ananim001
Ananim001
10.01.2024 19:47
Добрый день! Давайте рассмотрим поставленные вопросы по порядку.

а) Чтобы выразить векторы AN и DM через векторы a и b, мы можем воспользоваться свойствами параллелограмма ABCD. В параллелограмме диагонали делят друг друга пополам. Используя это свойство, мы можем сказать, что вектор AN равен полусумме векторов AB и AD, а вектор DM равен полусумме векторов DC и DB.

То есть, мы имеем:
AN = (1/2)*(AB + AD)
DM = (1/2)*(DC + DB)

Так как в задаче указаны векторы AB и AD, мы можем их использовать для подстановки в формулы:
AN = (1/2)*(a + b)
DM = (1/2)*(DC + DB)

б) Чтобы доказать, что векторы DB и MN коллинеарны, мы можем воспользоваться свойствами параллелограмма ABCD и векторными свойствами векторов.

Так как точки M и N являются серединами сторон BC и CD соответственно, мы можем сказать, что вектор MN равен полусумме векторов MC и ND.

Используя свойство серединного перпендикуляра, который говорит нам, что диагонали параллелограмма векторно равны, мы можем сказать, что вектор MC равен вектору BA, а вектор ND равен вектору AD.

То есть, мы имеем:
MN = (1/2)*(MC + ND)

Подставляя значения:
MN = (1/2)*(BA + AD)

Теперь мы знаем, что вектор AB равен вектору a, поэтому мы можем заменить его:
MN = (1/2)*(a + AD)

И также у нас есть вектор AD, равный вектору b, и мы можем его заменить:
MN = (1/2)*(a + b)

Таким образом, мы доказали, что векторы MN и DB коллинеарны, так как они представляют собой одинаковую комбинацию векторов a и b.

Надеюсь, что объяснение было понятным и подробным. Если у вас есть еще вопросы, не стесняйтесь задавать.
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота