Яб сказал, что если 300 волн по 5 метров происходят в секунду(300гц - это собственно и есть 300 раз в с), то скорость звука в данной где-то полтора километра в секунду. если верить моему предыдущему постулату, то туда-обратно звук пробежал 0,75км, соответственно растояние 375м. если верить наблюдательности рыболова, а я склонен ему верить - он ведь свободное время посвящает подсчёту волн за 16 сек, а не решению при 3-п, то частота - 0,5 раз в с, длина волны - 0,4м, а скорость растространения волн - l/t, где т - период - величина, обратная частоте.. получается где-то (опять же, если верить рыбацким байкам - то у них рыба в лодку не влезла, то волны бились, как ужаленные)0,5*0,4=0,2м/с вот тут надо б пощитать сначала время падения камня, а как? тут глубина ущелья s=0,5gt^2=340*t и t+t=8 (где t- время равноускоренного падения камня, а t - время равномерного возврата звука)тут надо что-то из чего-то выразить так как малая t в квадрате, я лучше выражу большую t=8-t 5t^2=340(8-t) -> 5t^2+340t-2720=0 (поделим-ка это всё на 5) t^2+68t-544=0 ща мы его решим он-лайн. там 2 корня - один отрицательный(-70), второй 7,23. в чём смысл отрицательного корня - не пойму. типа, звук прилетал за 70 секунд до броска? , а вот положительный даёт нам глубину 8-7,23=0,77 и помножить на скорость звука - 0,77*340=261м для проверки можешь подставить эту глубину в уравнение перемещения свободного падения (там где а-тэ-квадрат пополам)
Конечно, поставленный вопрос не корректен1. Потому, что энергия конденсатора зависит еще и от его заряда, причем во всех случаях прямо пропорционально квадрату заряда. Говорить же об изменении энергии конденсатора при изменении его емкости следует только при других заданных условиях: остается ли постоянным заряд конденсатора, остается ли неизменным напряжение на конденсаторе? Если изменение емкости происходит при неизменном заряде конденсатора (при этом изменяется его напряжение), то для расчета энергии следует использовать формулу W = q2/(2C), которая указывает, что увеличение емкости приводит к уменьшению энергии и, наоборот, уменьшение емкости приводит к увеличению энергии. Если же изменение емкости происходит при постоянном напряжении (например, когда конденсатор подключен к источнику постоянной ЭДС), то для расчета энергии и ее изменения нужно использовать выражение W = CU2/2. В этом случае увеличение емкости приводит к увеличению энергии.
Если изменение емкости происходит при неизменном заряде конденсатора (при этом изменяется его напряжение), то для расчета энергии следует использовать формулу W = q2/(2C), которая указывает, что увеличение емкости приводит к уменьшению энергии и, наоборот, уменьшение емкости приводит к увеличению энергии.
Если же изменение емкости происходит при постоянном напряжении (например, когда конденсатор подключен к источнику постоянной ЭДС), то для расчета энергии и ее изменения нужно использовать выражение W = CU2/2. В этом случае увеличение емкости приводит к увеличению энергии.