Мы знаем, что на поверхности Земли F=g·m, где g = 9.8 Н/кг с другой стороны, согласно Закону Всемирного тяготения F=G·m·M/R², где G=6.67e(-11) гравитационная постоянная М – масса Земли Значит g= G·M/R² Отсюда G·M=g·R² Когда спутник на геостационарной орбите его период вращения равен суткам T=86400 c орбитальная скорость v=2·pi·r/T определив r из условий равенства центростремительного ускорения и ускорения свободного падения спутника на геостационарной орбите v²/r=G·M/r² v²/r=g·R²/r² v²=g·R²/r r=g·R²/v² подставив в выше выведенную орбитальную скорость v=2·pi·g·R²/(v²·T) окончательно v=(2·pi·g·R²/T)^(1/3) v=(2·3.14·9.8·6400000²/86400)^(1/3) v=3079 м/с
Двигаясь по круговой орбите радиуса r, на спутник действует сила земного тяготения gmM/r2, где g - постоянная тяготения, m - масса спутника и M - масса планеты (Земли в нашем случае). Согласно второму закону Ньютона сила тяготения равна центростремительной силе mv2/r. Отсюда получаем выражение для скорости движения спутника по круговой орбите: v=(g M/r)1/2 Период обращения спутника вокруг Земли Tсп равен длине орбиты 2pr, делённой на скорость движения спутника v: Tсп=2pr/v=2p (r3/gM)1/2 Если этот орбитальный период Tсп равен периоду вращения Земли вокруг собственной оси (примерно 24 часа), то спутник будет "висеть" над одним и тем же районом Земли, а такая орбита называется геостационарной. Геостационарная орбита лежит в плоскости экватора Земли. Её радиус составляет 42164 км, что примерно в 6 раз больше радиуса Земли. Небесные координаты спутника на геостационарной орбите остаются постоянными и мы можем легко направить на него параболическую антенну (например, для приема спутникового телевидения). Зная период вращения (24 часа) и радиус Земли легко вычислить линейную скорость вращения на экваторе: v0 = w R, где w = 2p/86400 об/сек, и при R = 6378 км получается v0 ~ 460 м/c Радиус Земли R = 6400 км, масса Земли М = 6 • 1024 кг. ПРОВЕРЬ
F=g·m, где g = 9.8 Н/кг
с другой стороны, согласно Закону Всемирного тяготения
F=G·m·M/R²,
где G=6.67e(-11) гравитационная постоянная
М – масса Земли Значит
g= G·M/R²
Отсюда
G·M=g·R²
Когда спутник на геостационарной орбите его период вращения равен суткам T=86400 c
орбитальная скорость
v=2·pi·r/T
определив r из условий равенства центростремительного ускорения и ускорения свободного падения спутника на геостационарной орбите
v²/r=G·M/r²
v²/r=g·R²/r²
v²=g·R²/r
r=g·R²/v²
подставив в выше выведенную орбитальную скорость
v=2·pi·g·R²/(v²·T)
окончательно
v=(2·pi·g·R²/T)^(1/3)
v=(2·3.14·9.8·6400000²/86400)^(1/3)
v=3079 м/с
v=(g M/r)1/2
Период обращения спутника вокруг Земли Tсп равен длине орбиты 2pr, делённой на скорость движения спутника v:
Tсп=2pr/v=2p (r3/gM)1/2
Если этот орбитальный период Tсп равен периоду вращения Земли вокруг собственной оси (примерно 24 часа), то спутник будет "висеть" над одним и тем же районом Земли, а такая орбита называется геостационарной. Геостационарная орбита лежит в плоскости экватора Земли. Её радиус составляет 42164 км, что примерно в 6 раз больше радиуса Земли. Небесные координаты спутника на геостационарной орбите остаются постоянными и мы можем легко направить на него параболическую антенну (например, для приема спутникового телевидения).
Зная период вращения (24 часа) и радиус Земли легко вычислить линейную скорость вращения на экваторе: v0 = w R, где w = 2p/86400 об/сек, и при R = 6378 км получается v0 ~ 460 м/c
Радиус Земли R = 6400 км, масса Земли М = 6 • 1024 кг. ПРОВЕРЬ