В общем, нужно разместить ось OX, тело 1 будет двигаться вдоль этой оси. Предположим, тело 2 двигается против этой оси, тогда: m1v1-m2v2=(m2+m1)*v' 2-2*x=6*0.3 2x=2-1.8 2x=0.2 x=0.1. Раз нет минуса, значит, с направлением мы угадали, тело 2 двигалось против оси OX со скоростью 0.1 м/c
ответ: Импульс тела 1 до столкновения был равен p1=m1v1= 2кг*м/c Импульс тела 2 до столкновения был равен p2=m2v2=0.2кг*м/c Импульс тел после столкновения стал равен p'=(m1+m2)*v'= 0.3*6= 1.8 кг*м/c Вектор скорости тела 2 был антинаправлен вектору скорости тела 1. Тело 2 двигалось со скоростью 0.1 м/c
m1v1-m2v2=(m2+m1)*v'
2-2*x=6*0.3
2x=2-1.8
2x=0.2
x=0.1. Раз нет минуса, значит, с направлением мы угадали, тело 2 двигалось против оси OX со скоростью 0.1 м/c
ответ:
Импульс тела 1 до столкновения был равен p1=m1v1= 2кг*м/c
Импульс тела 2 до столкновения был равен p2=m2v2=0.2кг*м/c
Импульс тел после столкновения стал равен p'=(m1+m2)*v'= 0.3*6= 1.8 кг*м/c
Вектор скорости тела 2 был антинаправлен вектору скорости тела 1. Тело 2 двигалось со скоростью 0.1 м/c
2) Напишем первый закон Ньютона (сумма всех сил = 0, при этом силы - это вектора):
N + mg + Fтр = 0.
Спроецируем вектора на оси OX и OY:
OX: mg sinα - u N = 0
(в этой записи мы учли, что Fтр = u N, где u - коэф-т трения, N - сила нормальной реакции опоры)
OY: N - mg cosα = 0,
N = mg cosα (!)
Подставим формулу (!) в OX:
mg sinα - u mg cosα = 0, откуда
u = tgα.
таким образом, масса бруска не нужна, важен только угол наклонной плоскости