Тело по параболе (вертикальная координата) движется в соответствии с уравнением y(t)=vo*sin(α)*t*-0,5*9,81*t², где 9,81 - ускорение свободного падения. y(t)=640*t*sin(30)-0,5*9,81*t²=1200⇒1200=640*0,5*t-4,905*t²⇒-4,905*t²+320*t-1200=0, далее решаем квадратное уравнение известным алгоритмом и находим, что t1=3,995 секунды и t2=61,245 секунды. В ответ берём меньшее время (первое от момента броска, второе наступает после пролёта телом точки максимального подъёма). ответ: искомое время составляет 3,995 секунды.
Как верно заметили в комментариях, вес тела в воде уменьшается на значение силы Архимеда. Её можно выразить как Fa = p(в)gV, то есть произведение плотности воды, коэфицциента g и объёма тела. Зная, что Fa = 5 - 3 = 2 Н, выразим объём: V = 2 / (1000 * 10) = 2 * 10^-4 м^3. Из значения силы тяжести определим массу шара: F = mg => m = F/g. m = 5 / 10 = 0,5 кг. В то же время, зная объём шара и плотность железа, можно предположить, сколько бы весил наш шар, будучи чисто железным: M = pV M = 7870 * 2 * 10^-4 = 1,574 кг. Значит объёмная доля железа в шаре будет равна отнощению масс: m/M, а воздуха (считаем его невесомым) - (M - m) / M. И объём воздушной полости тогда: ((M - m) / M) * V. Подставляем числа: ((1,574 - 0,5) / 1,574 ) * 2 * 10^-4 = (1,074 / 1,574)* 2 * 10^-4 = 1,37 * 10^-4 м^3 (округлённо). Спрашивайте, если что непонятно.
V = 2 / (1000 * 10) = 2 * 10^-4 м^3.
Из значения силы тяжести определим массу шара:
F = mg => m = F/g.
m = 5 / 10 = 0,5 кг.
В то же время, зная объём шара и плотность железа, можно предположить, сколько бы весил наш шар, будучи чисто железным:
M = pV
M = 7870 * 2 * 10^-4 = 1,574 кг.
Значит объёмная доля железа в шаре будет равна отнощению масс: m/M, а воздуха (считаем его невесомым) - (M - m) / M.
И объём воздушной полости тогда: ((M - m) / M) * V. Подставляем числа:
((1,574 - 0,5) / 1,574 ) * 2 * 10^-4 = (1,074 / 1,574)* 2 * 10^-4 = 1,37 * 10^-4 м^3 (округлённо).
Спрашивайте, если что непонятно.