Если считать, что плотность солёной воды больше, чем пресной, то думаю, что уровень повысится.
Если бы кубик был из солёной воды, то после таяния уровень не изменился бы, потому что получившийся объём растаявшей солёной воды, умноженный на плотность солёной воды равен массе куска солёного льда, равен объёму вытесняемой солёной воды пока кубик ещё плавает.
Но наш кубик из пресной воды, следовательно при той же массе (поэтому давая такой же подъём уровня в сосуде, как и солёный кубик) пресный растает в бОльший объём воды, чем растаял бы солёный, и это повысит уровень.
Может ошибаюсь, но думаю что так. Нужно будет попробовать при случае.
Если бы кубик был из солёной воды, то после таяния уровень не изменился бы, потому что получившийся объём растаявшей солёной воды, умноженный на плотность солёной воды равен массе куска солёного льда, равен объёму вытесняемой солёной воды пока кубик ещё плавает.
Но наш кубик из пресной воды, следовательно при той же массе (поэтому давая такой же подъём уровня в сосуде, как и солёный кубик) пресный растает в бОльший объём воды, чем растаял бы солёный, и это повысит уровень.
Может ошибаюсь, но думаю что так. Нужно будет попробовать при случае.
R₁ = 259.8 H; R₂ = 150 H
Объяснение:
Будем считать, угол между левой и правой опорными плоскостями равен 90°.
G = 300H
R₁ - ? - реакция правой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
R₂ - ? - реакция левой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
Очевидно, что R₁ ⊥ R₂
Проецируем систему сил на направление R₁
R₁ - G · cos 30° = 0
R₁ = G · cos 30° = 300 · 0.866 = 259.8 (H)
Проецируем систему сил на направление R₂
R₂ - G · sin 30° = 0
R₂ = G · sin 30° = 300 · 0.5 = 150 (H)