В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
MargoSimka
MargoSimka
08.01.2020 02:17 •  Физика

Через скільки секунд від початку руху авто досягне 36км\год, якщо прискорення 2м\с

Показать ответ
Ответ:
alinasharifulli
alinasharifulli
07.09.2020 13:19
на протяжении всей операции не меняет свой объем.

Выразим V из закона Менделеева-Клапейрона: 

P V = m R T / M => V = m R T / P M.

А теперь приравняем V1 к V2. И дабы не писать лишнего, сразу посмотрим, что у нас сократится: M, R, m (но сначала я напишу с m для ясности). Получаем:

m T1 / P1 = 0,4 m T2 / P2.

У тебя сейчас, наверное, возник вопрос: почему во второй части уравнения перед m стоит 0,4?

- Потому что исходя из условия задачи мы можем сделать вывод, что m2 = 0,4 m1 (в уравнении m1 заменена на просто m для краткости). 

Теперь сокращаем массы, выводим P2:

P2 = 0,4 T2 P1 / T1 = 4*10^-1 * 273 * 2*10^5 / 3*10^2 = 72,8*10^3 Па
0,0(0 оценок)
Ответ:
Даша0124
Даша0124
17.08.2022 20:36

5 с

Объяснение:

Запишем уравнение движения Фокса и Форда, приняв для последнего начальную координату за x₀₂ и скорость за v₂:

\displaystyle x_{Fox}(t)=\frac{at^2}{2}

\displaystyle x_{Ford}(t)=x_{02}-v_2t

Тогда, расстояние между ними подчиняется закону:

\displaystyle s(t)=x_{Ford}(t)-x_{Fox}(t)=x_{02}-v_2t-\frac{at^2}{2}

По условию, в некоторый момент времени τ это расстояние удовлетворяет условию:

\displaystyle x_{02}-v_2\tau-\frac{a\tau^2}{2}=0.75x_{02}

Скорости Фокса и Форда:

\displaystyle v_{Fox}(t)=at

\displaystyle v_{Ford}(t)=v_2

Их относительная скорость в момент времени τ:

\displaystyle v'=a\tau+v_2=3.5 м/с

Подставляя все исходные данные в уравнения получим систему:

\displaystyle 65-v_2\tau-0.05\tau^2=0.75*65=48.75

\displaystyle 0.1\tau+v_2=3.5

Выражаем скорость Форда из второго уравнения и подставляем ее в в первое:

\displaystyle v_2=3.5-0.1\tau

\displaystyle 65-(3.5-0.1\tau)\tau-0.05\tau^2=48.75

\displaystyle 65-3.5\tau+0.1\tau^2-0.05\tau^2=48.75

\displaystyle 0.05\tau^2-3.5\tau+16.25=0

Решая полученное квадратное уравнение, находим два корня 65 и 5 секунд. Скорости Форда, соответствующие этим временам 3,5-0,1*5=3 м/с и 3,5-0,1*65=-3 м/с, значит нам подходит решение 5 секунд, так как для 65 секунд Форд идет не на встречу Фоксу, а убегает от него.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота