825=(8-четное;9,9,7-нечетные)8<25-подходит 1513=(сразу видно, что не подходит т.к 15>13, а у нас порядок неубывания(возрастания)) 210=(2-четное;снова не получится, т.к число 10 не сложить из трех нечетных)-не подходит 1116=(не получится, т.к 8,8-четные;а 11 из двух нечетных не сложить)-не подходит 1214=(6,6-четные;7,7-нечетные(12<14))-подходит 105=(не получится,т.к здесь порядок убывания 10>5) 520=(5-нечетное;8,8,4-четные(порядок возрастания 5<20))-подходит 292=(не получится т.к 2<92, а максимальное число нечетных 9+9+9=27) 34=(1,1,1-нечетные;4-четное(порядок возрастания 3<4))-подходит В РЕЗУЛЬТАТЕ РАБОТЫ АВТОМАТА ПОЛУЧИТСЯ 4 ЧИСЛА
В верхней точке скорость тела становится равной нулю, а потом тело начинает движение вниз. Время, через которое скорость по модулю снова станет равной υ_0, будет складываться из времени t_1 и времени t_2:
Чтобы найти расстояние S, нужно из расстояния s' (перемещение тела при спуске) отнять расстояние s (перемещение тела при подъёме). s < s', т.к. a_1 по модулю > а_2. Итак:
S = s' - s
s = υ_0²/(2*a_1)
s' = a_2*t_2²/2 = a_2*(υ_0/a_2)²/2 = υ_0²/(2*a_2) => S = [υ_0²/(2*a_2)] - [υ_0²/(2*a_1)] = [5²/(2*10*(0,5 - 0,5*√3/2))] - [5²/(2*10*(0,5 + 0,5*√3/2))] = 17,32... = 17 м
1513=(сразу видно, что не подходит т.к 15>13, а у нас порядок неубывания(возрастания))
210=(2-четное;снова не получится, т.к число 10 не сложить из трех нечетных)-не подходит
1116=(не получится, т.к 8,8-четные;а 11 из двух нечетных не сложить)-не подходит
1214=(6,6-четные;7,7-нечетные(12<14))-подходит
105=(не получится,т.к здесь порядок убывания 10>5)
520=(5-нечетное;8,8,4-четные(порядок возрастания 5<20))-подходит
292=(не получится т.к 2<92, а максимальное число нечетных 9+9+9=27)
34=(1,1,1-нечетные;4-четное(порядок возрастания 3<4))-подходит
В РЕЗУЛЬТАТЕ РАБОТЫ АВТОМАТА ПОЛУЧИТСЯ 4 ЧИСЛА
Дано:
α = 30°
υ_0 = 5 м/с
μ = 0,5
g = 10 м/с²
τ, S - ?
При подъёме тело движется с торможением, равным:
mg*sinα + μ*mg*cosα = m*a_1 | : m
g*(sinα + μ*cosα) = a_1
При спуске ускорение равно:
mg*sinα - μ*mg*cosα = m*a_2 | : m
g*(sinα - μ*cosα) = a_2
В верхней точке скорость тела становится равной нулю, а потом тело начинает движение вниз. Время, через которое скорость по модулю снова станет равной υ_0, будет складываться из времени t_1 и времени t_2:
τ = t_1 + t_2
υ = υ_0 - a_1*t_1, υ = 0 => υ_0 = a_1*t_1 =>
=> t_1 = υ_0/a_1
υ' = υ_0' + a_2*t_2, υ_0' = 0, υ' = υ_0 =>
=> t_2 = υ_0/a_2
τ = t_1 + t_2 = (υ_0/a_1) + (υ_0/a_2) = υ_0/(g*(sinα + μ*cosα)) + υ_0/(g*(sinα - μ*cosα)) = 5/(10*(0,5 + 0,5*√3/2)) = 5/(10*(0,5 - 0,5*√3/2)) = 8 с
Чтобы найти расстояние S, нужно из расстояния s' (перемещение тела при спуске) отнять расстояние s (перемещение тела при подъёме). s < s', т.к. a_1 по модулю > а_2. Итак:
S = s' - s
s = υ_0²/(2*a_1)
s' = a_2*t_2²/2 = a_2*(υ_0/a_2)²/2 = υ_0²/(2*a_2) => S = [υ_0²/(2*a_2)] - [υ_0²/(2*a_1)] = [5²/(2*10*(0,5 - 0,5*√3/2))] - [5²/(2*10*(0,5 + 0,5*√3/2))] = 17,32... = 17 м
ответ: 8 с, 17 м.