Применение- На башне устанавливается большой бак с водой (водонапорная башня). От бака идут трубы с целым рядом ответвлений, вводимых в дома. Концы труб закрываются кранами. У крана давление воды, заполняющей трубы, равно давлению столба воды, имеющего высоту, равную разности высот между краном и свободной поверхностью воды в баке. Так как бак устанавливается на высоте десятков метров, то давление у крана может достигать нескольких атмосфер. Очевидно, что давление воды на верхних этажах меньше давления на нижних этажах.
Вода в бак водонапорной башни подается насосами
Дано:
g = 10м/с² - ускорение свободного падения
Vo = 40м/c - начальная скорость
t1 = 2c
t2 = 5c
Найти:
V1 и V2 - соответствующие скорости тела, u2 - перемещение тела,
S2 - пройденный путь
Вертикальная координата х тела равна
х = Vot - 0,5gt²
или
х = 40t - 0,5·10t²
Исследуем эту функцию, найдём её нули
40t - 5t² = 0
5t(8 - t) = 0
t = 0, t = 8
Итак, через 8с тело упадёт на землю.
Через 4с оно достигнет высшей точки
Найдём координату х высшей точки
хmax = 40·4 - 0,5·10·16 = 80м
Скорость
V = Vo-gt
V1 = 40 - 10·2 = 20м/с (знак "+" показывает, что скорость направлена верх)
V2 = 40 - 10·5 = -10м/с (знак "-"показывает, что скорость направлена вниз)
координата тела через 5с
x2 = 40·5 - 0,5·10·25 = 75м
Перемещение тела u = х2 = 75м
После достижения высшей точки (хmax = 80м) тело пролетело вниз ещё 80 - 75 = 5м.
Путь тела S2 = 80 + 5 = 85м