Форма некоторого холма задается уравнением y=H−αx2, где высота H=10 м, а коэффициент α=0,05 м−1. Найдите скорость, с которой нужно бросить тело с вершины холма, чтобы оно летело вдоль поверхности этого холма. Ускорение свободного падения принять равным 10 м/с2, сопротивлением воздуха пренебречь. ответ выразите в м/с, округлив до целых.
2
Пример. Тело свободно падает с высоты 4 м при нулевой начальной скорости. Какова будет его скорость при достижении земной поверхности? Рассчитайте скорость падения тела по формуле, учитывая, что v0=0. Произведите подстановку v=√(2∙9,81∙4)≈8,86 м/с.
3
Измерьте время падения тела t электронным секундомером в секундах. Найдите его скорость в конце отрезка времени, которое продолжалось движение прибавив к начальной скорости v0 произведения времени на ускорение свободного падения v=v0+g∙t.
4
Пример. Камень начал падение с начальной скоростью 1 м/с. Найдите его скорость через 2 с. Подставьте значения указанных величин в формулу v=1+9,81∙2=20,62 м/с.
5
Рассчитайте скорость падения тела, брошенного горизонтально. В этом случае его движение является результатом двух типов движения, в которых одновременно принимает участие тело. Это равномерное движение по горизонтали и равноускоренное - по вертикали. В результате траектория тела имеет вид параболы. Скорость тела в любой момент времени будет равна векторной сумме горизонтальной и вертикальной составляющей скорости. Поскольку угол между векторами этих скоростей всегда прямой, то для определения скорости падения тела, брошенного горизонтально, воспользуйтесь теоремой Пифагора. Скорость тела будет равна корню квадратному из суммы квадратов горизонтальной и вертикальной составляющих в данный момент времени v=√(v гор²+ v верт²). Вертикальную составляющую скорости рассчитывайте по методике, изложенной в предыдущих пунктах.
6
Пример. Тело брошено горизонтально с высоты 6 м со скоростью 4 м/с. Определите его скорость при ударе о землю. Найдите вертикальную составляющую скорости при ударе о землю. Она будет такой же, как если бы тело свободно падало с заданной высоты v верт =√(2∙g∙h). Подставьте значение в формулу и получите v=√(v гор²+ 2∙g∙h)= √(16+ 2∙9,81∙6)≈11,56 м/с.
ответ:
объяснение:
на основании закона сохранения и превращения энергии составим уравнение:
wк1+wp1=wk2+wp2, где wк1, wp1 -кинетическая и потенциальная энергия шарика, находящегося на высоте h на наклонной плоскости; wк2, wp2 - кинетическая и потенциальная энергия шарика у основания наклонной плоскости.
нулевой уровень потенциальной энергии совместим с основанием наклонной плоскости. тогда
wp1 = mgh+q1*q2/4*pi*e0*h
wk1 = 0
второе слагаемое в выражении для wpl представляет собой потенциальную энергию, обусловленную взаимным расположением зарядов q1 и q2. пусть υ — скорость шарика у основания наклонной плоскости. тогда
wk2=m*v^2/2.
в это время расстояние между , как видно из рисунка, равно h/tgα. поэтому
wp2 = q1*q2*tga/4*pi*e0*h
с учетом этих значений энергии уравнение первое примет вид:
mgh+q1*q2/4*pi*e0*h = m*v^2/2 + q1*q2*tga/4*pi*e0*h
отсюда найдем скорость:
v = √2h+q1*q2*tga/2*pi*m*e0*h(1-tga)