хлопчик випустив з рук м'яч на висоти 1,5 м,коли м,яч видскочив вид пидлоги,спиймав його на висоти 1м .Який шлях пройшов м,яч ? Чому доривнює перемищення м,яч?
растительность аргентины отличается большим многообразием: от тропических лесов на севере до полупустынь в патагонии и пуне. по долинам рек растут вечнозеленые леса и рощи, преимущественно из восковой пальмы. открытые пространства восточного чако покрыты злаковой растительностью, а на западе, где более сухо, распространена ксерофитная кустарниковая растительность типа «монте» из колючих акаций, кактусов, мимоз. примерно треть территории гран-чако покрыта лесами, в которых особую ценность представляет дерево кебрачо . встречаются здесь и другие виды деревьев: гуаякан, твердую древесину черного цвета, чаньяр со съедобными , похожими по вкусу на финики.
в северном междуречье растут субтропические леса с разнообразным видовым составом. здесь встречаются ценной древесиной араукария, седро, лапачо. южнее преобладает кустарниковая растительность; пространства покрыты камышами, тростниками, кувшинками, а возвышенные и сухие — лугами с богатым травяным покровом. встречаются разреженные леса из акаций, мимоз, страусового дерева; по берегам рек — пальмовые рощи.
по направлению к югу становится больше открытых травянистых участков, южная часть провинции энтре-риос — злаковая прерия и представляет уже переходную область к пампе.
растительность аргентины отличается большим многообразием: от тропических лесов на севере до полупустынь в патагонии и пуне. по долинам рек растут вечнозеленые леса и рощи, преимущественно из восковой пальмы. открытые пространства восточного чако покрыты злаковой растительностью, а на западе, где более сухо, распространена ксерофитная кустарниковая растительность типа «монте» из колючих акаций, кактусов, мимоз. примерно треть территории гран-чако покрыта лесами, в которых особую ценность представляет дерево кебрачо . встречаются здесь и другие виды деревьев: гуаякан, твердую древесину черного цвета, чаньяр со съедобными , похожими по вкусу на финики.
в северном междуречье растут субтропические леса с разнообразным видовым составом. здесь встречаются ценной древесиной араукария, седро, лапачо. южнее преобладает кустарниковая растительность; пространства покрыты камышами, тростниками, кувшинками, а возвышенные и сухие — лугами с богатым травяным покровом. встречаются разреженные леса из акаций, мимоз, страусового дерева; по берегам рек — пальмовые рощи.
по направлению к югу становится больше открытых травянистых участков, южная часть провинции энтре-риос — злаковая прерия и представляет уже переходную область к пампе.
Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.
Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).
Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).
Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.
Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:
xп = 0 + 1 · t, xв = 20 - 3 · t.
Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты
Объяснение:
Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = xв. (3) (условие встречи пешехода и велосипедиста)
Шаг 7 (аналитический). Решение уравнений.
Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):
0 + 1 · t = 20 - 3 · t
Приведем подобные слагаемые и решим уравнение:
(1+3) · t = 20, t = 20/4 = 5 (с).
Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.
Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):
xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).
Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.
Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):
xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).
Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.
Итоги
При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде
растительность аргентины отличается большим многообразием: от тропических лесов на севере до полупустынь в патагонии и пуне. по долинам рек растут вечнозеленые леса и рощи, преимущественно из восковой пальмы. открытые пространства восточного чако покрыты злаковой растительностью, а на западе, где более сухо, распространена ксерофитная кустарниковая растительность типа «монте» из колючих акаций, кактусов, мимоз. примерно треть территории гран-чако покрыта лесами, в которых особую ценность представляет дерево кебрачо . встречаются здесь и другие виды деревьев: гуаякан, твердую древесину черного цвета, чаньяр со съедобными , похожими по вкусу на финики.
в северном междуречье растут субтропические леса с разнообразным видовым составом. здесь встречаются ценной древесиной араукария, седро, лапачо. южнее преобладает кустарниковая растительность; пространства покрыты камышами, тростниками, кувшинками, а возвышенные и сухие — лугами с богатым травяным покровом. встречаются разреженные леса из акаций, мимоз, страусового дерева; по берегам рек — пальмовые рощи.
по направлению к югу становится больше открытых травянистых участков, южная часть провинции энтре-риос — злаковая прерия и представляет уже переходную область к пампе.
растительность аргентины отличается большим многообразием: от тропических лесов на севере до полупустынь в патагонии и пуне. по долинам рек растут вечнозеленые леса и рощи, преимущественно из восковой пальмы. открытые пространства восточного чако покрыты злаковой растительностью, а на западе, где более сухо, распространена ксерофитная кустарниковая растительность типа «монте» из колючих акаций, кактусов, мимоз. примерно треть территории гран-чако покрыта лесами, в которых особую ценность представляет дерево кебрачо . встречаются здесь и другие виды деревьев: гуаякан, твердую древесину черного цвета, чаньяр со съедобными , похожими по вкусу на финики.
в северном междуречье растут субтропические леса с разнообразным видовым составом. здесь встречаются ценной древесиной араукария, седро, лапачо. южнее преобладает кустарниковая растительность; пространства покрыты камышами, тростниками, кувшинками, а возвышенные и сухие — лугами с богатым травяным покровом. встречаются разреженные леса из акаций, мимоз, страусового дерева; по берегам рек — пальмовые рощи.
по направлению к югу становится больше открытых травянистых участков, южная часть провинции энтре-риос — злаковая прерия и представляет уже переходную область к пампе.
Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.
Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).
Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).
Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.
Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:
xп = 0 + 1 · t, xв = 20 - 3 · t.
Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты
Объяснение:
Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = 0 + 1 · t, (1) (закон движения пешехода)
xв = 20 - 3 · t, (2) (закон движения велосипедиста)
xп = xв. (3) (условие встречи пешехода и велосипедиста)
Шаг 7 (аналитический). Решение уравнений.
Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):
0 + 1 · t = 20 - 3 · t
Приведем подобные слагаемые и решим уравнение:
(1+3) · t = 20, t = 20/4 = 5 (с).
Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.
Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):
xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).
Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.
Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):
xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).
Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.
Итоги
При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде