на графіку показано залежність швидкості руху автомобіля що розганняється від часу визначте почяткову швидкість руху та модуль прискорення автомобілля скажите очьнь сросно надо на завтра
Пусть p кг/м³ - плотность материала шара, V - его объём, k Н/м - жёсткость пружины, x м - её удлинение под действием силы тяжести при отсутствии сосуда, x1 м - то же при наличии сосуда. При отсутствии сосуда на шар действуют сила упругости пружины F=k*x и сила тяжести Fт=m*g, где m=p*V - масса шара, g - ускорение свободного падения. Так как по условию шар неподвижен, то F=Fт, или k*x=p*V*g (*). При наличии сосуда на шар действуют сила упругости F1=k*x1, сила Архимеда F2=p0*V0*g и сила тяжести Fт=p*V*g, где V0=μ*V=0,6*V - часть объёма шара, погружённая в жидкость. Так как и в этом случае шар неподвижен, то F1+F2=Fт, или k*x1+p0*V0*g=p*V*g, или k*x1+900*0,6*V*g=k*x1+540*V*g=p*V*g (**). И так как по условию x1=x/η=x/1,4, то отсюда x=1,4*x1 м. Подставляя это выражение в уравнение (*) и присоединяя к нему уравнение (**), получаем систему уравнений:
1,4*k*x1=p*V*g
k*x1+540*V*g=p*V*g
Из первого уравнения находим p=1,4*k*x1/(V*g). Разделив теперь второе уравнение на произведение V*g, получаем уравнение k*x1/(V*g)+540=p. Умножив это уравнение на 1,4, приходим к уравнению
p+756=1,4*p. Решая его, находим p=756/0,4=1890 кг/м³.
ответ: ρ=1890.
Объяснение:
Пусть p кг/м³ - плотность материала шара, V - его объём, k Н/м - жёсткость пружины, x м - её удлинение под действием силы тяжести при отсутствии сосуда, x1 м - то же при наличии сосуда. При отсутствии сосуда на шар действуют сила упругости пружины F=k*x и сила тяжести Fт=m*g, где m=p*V - масса шара, g - ускорение свободного падения. Так как по условию шар неподвижен, то F=Fт, или k*x=p*V*g (*). При наличии сосуда на шар действуют сила упругости F1=k*x1, сила Архимеда F2=p0*V0*g и сила тяжести Fт=p*V*g, где V0=μ*V=0,6*V - часть объёма шара, погружённая в жидкость. Так как и в этом случае шар неподвижен, то F1+F2=Fт, или k*x1+p0*V0*g=p*V*g, или k*x1+900*0,6*V*g=k*x1+540*V*g=p*V*g (**). И так как по условию x1=x/η=x/1,4, то отсюда x=1,4*x1 м. Подставляя это выражение в уравнение (*) и присоединяя к нему уравнение (**), получаем систему уравнений:
1,4*k*x1=p*V*g
k*x1+540*V*g=p*V*g
Из первого уравнения находим p=1,4*k*x1/(V*g). Разделив теперь второе уравнение на произведение V*g, получаем уравнение k*x1/(V*g)+540=p. Умножив это уравнение на 1,4, приходим к уравнению
p+756=1,4*p. Решая его, находим p=756/0,4=1890 кг/м³.
Дано: СИ: Решение:
t1=13°C 1) Qп=Q1+Q2
t2=100°C Q1=c1m1Δt
m1=250г 0,25кг Q2=c2m2Δt
с1=4200Дж/(кг*°C) Qп=4200*0.25*87+500*0.2*87
m2=200г 0,2кг Qп=1000050Дж
с2=500Дж/(кг*°C) 2) n=Qп*100%/Qз -> Qз=Qп*100%/n
q=Дж/кг Qз=100,050*100/30=333.500Дж
n=30% 3) Q=Qз+Qg
m3-? Q=333500+100050=433500Дж
4) Q=Q3
Q3=qm3 ->m3=Q3/q
m3=433500/=0.015кг
ответ: 15г