Нужно составить уравнение для общего времени. Общее время будет равно сумме отдельных промежутков:
t_o = t1 + t2 + t3
t2 известно. А каждый из двух оставшихся промежутков выразим через известные величины. Будем пользоваться формулой равномерного движения:
S = υ*t
Только вместо S будет V:
V = υ*t, тогда:
V1 = υ1*t1 => t1 = V1/υ1 = (V/2)/υ1 = V/(2*υ1)
V3 = υ3*t3 => t3 = V3/υ3 = (V/3)/υ3 = V/(3*υ3) =>
t_o = V/(2*υ1) + t2 + V/(3*υ3)
Нам неизвестен объём V. Его можно выразить, используя время t2, объём V2 и скорость υ2. Если сначала Карлсон съел половину банки (V/2), а потом ему осталось съесть треть банки (V/3), то со скоростью υ2 он съел объём V2, равный разности того, что осталось после первого съедения (а осталась ровно половина), и трети содержимого банки (V2 = V/2 - V/3):
В воздухе вес покоящегося тела равен силе тяжести, действующей на него (выталкиванием из газа пренебрегаем в силу маленькой плотности воздуха). ( - плотность тела) В воде из силы тяжести вычитается еще сила Архимеда. И вот здесь будем внимательными. По определению: вес тела есть сила, с которой оно действует на опору или подвес. Таким образом, вовсе не обязательно, что эта сила направлена книзу. Поэтому у нас два варианта: 1) сила Архимеда меньше силы тяжести, и тело тонет в воде, стало быть, чтобы удержать его в покое, необходима сила, направленная кверху; 2) сила Архимеда больше силы тяжести, и тело плавает, соответственно, нужно его топить силой, направленной книзу. Разберемся отдельно с первым и вторым случаями.
1) ( - плотность керосина) Подставим , получится . Отсюда: . Ну и все. Подставляем только что найденную комбинацию в самое первое уравнение и выражаем из него неизвестную плотность:
2) Все аналогично, только . Соответственно, ответ будет с другим знаком около , то есть,
Дано:
t_o = 1,5 ч = 90 мин
V1 = V/2
υ1 = 9 л/мин
t2 = 30 мин
υ2 = 4 л/мин
V3 = V/3
υ3 = υ_min - ?
t_o - общее время
t - время поедания части содержимого банки
υ - скорость поедания
V - объём банки варенья
Нужно составить уравнение для общего времени. Общее время будет равно сумме отдельных промежутков:
t_o = t1 + t2 + t3
t2 известно. А каждый из двух оставшихся промежутков выразим через известные величины. Будем пользоваться формулой равномерного движения:
S = υ*t
Только вместо S будет V:
V = υ*t, тогда:
V1 = υ1*t1 => t1 = V1/υ1 = (V/2)/υ1 = V/(2*υ1)
V3 = υ3*t3 => t3 = V3/υ3 = (V/3)/υ3 = V/(3*υ3) =>
t_o = V/(2*υ1) + t2 + V/(3*υ3)
Нам неизвестен объём V. Его можно выразить, используя время t2, объём V2 и скорость υ2. Если сначала Карлсон съел половину банки (V/2), а потом ему осталось съесть треть банки (V/3), то со скоростью υ2 он съел объём V2, равный разности того, что осталось после первого съедения (а осталась ровно половина), и трети содержимого банки (V2 = V/2 - V/3):
t2 = V2/υ2 = (V/2 - V/3)/υ2 = (3V/6 - 2V/6)/υ2 = (V/6)/υ2 = V/(6*υ2) => V = 6*υ2*t2
t_o = 6*υ2*t2/(2*υ1) + t2 + 6*υ2*t2/(3*υ3) = 3*υ2*t2/υ1 + t2 + 2*υ2*t2/υ3 - выражаем скорость υ3 и находим её значение:
t_o - 3*υ2*t2/υ1 - t2 = 2*υ2*t2/υ3
υ3 = (2*υ2*t2) / (t_o - 3*υ2*t2/υ1 - t2) = (2*4*30) / (90 - 3*4*30/9 - 30) = 240/(90 - 40 - 30) = 240/20 = 12 л/мин
υ_min = 12 л/мин
ответ: 12 л/мин.
( - плотность тела)
В воде из силы тяжести вычитается еще сила Архимеда. И вот здесь будем внимательными. По определению: вес тела есть сила, с которой оно действует на опору или подвес. Таким образом, вовсе не обязательно, что эта сила направлена книзу. Поэтому у нас два варианта: 1) сила Архимеда меньше силы тяжести, и тело тонет в воде, стало быть, чтобы удержать его в покое, необходима сила, направленная кверху; 2) сила Архимеда больше силы тяжести, и тело плавает, соответственно, нужно его топить силой, направленной книзу.
Разберемся отдельно с первым и вторым случаями.
1) ( - плотность керосина)
Подставим , получится .
Отсюда: .
Ну и все. Подставляем только что найденную комбинацию в самое первое уравнение и выражаем из него неизвестную плотность:
2) Все аналогично, только .
Соответственно, ответ будет с другим знаком около , то есть,