Это графики изменения координаты тела со временем.
Возьмем 1 тело. Координата уменьшается, тело движется против оси координат. Чтобы найти скорость движения, надо взять промежуток времени и посмотреть пройденный за это время путь.
Если взять первые 10 с, то координата была 300 м, а стала 250 м.
V1=(250 - 300)/10=-50/10=-5 м/с
Возьмем 20 с. V1=(200 - 300)/20= - 5 м/с. Движение равномерное с постоянной скоростью (-5) м/с. Минус показывает, что тело движется против оси координат из точки 300 м к началу отсчета.
Второй график. Координата увеличивается, тело движется вдоль оси координат. Найдем скорость. Возьмем 20 с. За это время тело из точки 150 м перешло в точку 200 м.
V2=(200 - 150)/20=2,5 м/с.
Тело из точки 150 м движется вдоль оси координат со скоростью
2,5 м/с.
Точка пересечения показывает, что оба тела через 20 с после начала наблюдения за телами находились в точке 200 м от начала отсчета. Если у них была одинаковая координата, значит они встретились. После встречи стали удаляться друг от друга.
Это графики изменения координаты тела со временем.
Возьмем 1 тело. Координата уменьшается, тело движется против оси координат. Чтобы найти скорость движения, надо взять промежуток времени и посмотреть пройденный за это время путь.
Если взять первые 10 с, то координата была 300 м, а стала 250 м.
V1=(250 - 300)/10=-50/10=-5 м/с
Возьмем 20 с. V1=(200 - 300)/20= - 5 м/с. Движение равномерное с постоянной скоростью (-5) м/с. Минус показывает, что тело движется против оси координат из точки 300 м к началу отсчета.
Второй график. Координата увеличивается, тело движется вдоль оси координат. Найдем скорость. Возьмем 20 с. За это время тело из точки 150 м перешло в точку 200 м.
V2=(200 - 150)/20=2,5 м/с.
Тело из точки 150 м движется вдоль оси координат со скоростью
2,5 м/с.
Точка пересечения показывает, что оба тела через 20 с после начала наблюдения за телами находились в точке 200 м от начала отсчета. Если у них была одинаковая координата, значит они встретились. После встречи стали удаляться друг от друга.
я так понимаю, треугольник ABC является абсолютно твёрдым телом?
обозначим единичные векторы направлений сторон e₁, e₂, e₃ (направления AB, BC, AC, соответственно) , а векторы скоростей вершин v₁, v₂, v₃ (вершины A, B, C, соответственно)
в силу нерастяжимости сторон проекции скоростей вершин любой стороны на эту сторону равны, то есть
v₁·e₁=v₂·e₁, v₂·e₂=v₃·e₂, v₃·e₃=v₁·e₃
кроме того из условия следует, что v₂=v e₁ и что v₃=x e₂
векторы e₁, e₂, e₃ единичные, поэтому e₁·e₁=1, e₂·e₂=1, e₃·e₃=1
из геометрии следует, что e₁·e₂=cos 120°=-1/2, e₂·e₃=cos 60°=1/2, e₁·e₃=cos 60°=1/2
подставляя все эти данные в условия нерастяжимости сторон, получим
v₁·e₁=v, -v/2=x, x/2=v₁·e₃
откуда v₁·e₁=v, v₁·e₃=-v/4
пусть v₁=a e₁+b e₃
тогда a+b/2=v, a/2+b=-v/4, откуда a=3v/2, b=-v
v₁²=a²+b²+2ab/2=a²+b²+ab=9v²/4+v²-3v²/2=7v²/4
поэтому |v₁|=(v√7)/2