Объяснение:
Определение
Однородное- поле, где линии магнитного поля параллельны и расположены с одинаковой густотой
Неоднородное- поле, где линии м. поля непраллельны и расположены с разной густотой, линии искривлены
Сила
В однородном- сила действия на магнитную стрелку одинакова по модулю и направлению в любой точке
В неоднородном- меняется от точки к точке
Линии м.п.
Однородное - с одинаковой густотой, параллельны
Неоднородное- наоборот
Примеры
Однородное- внутри постоянного полосового магнита в центральной его части
Неоднородное- поле вокруг прямолинейного проводника с током
V= 1,6*10⁻²м³
p= 2*10⁻³ м³
m= 1,2*10⁻²кг
M= 0,029 кг/моль
T-?
по уравнению Менделеева Клапейрона
pV=mRT/M
T=pVM/(mR)
T=2*10⁻³*1.6*10⁻²2.9*10⁻²/(1.2*10⁻²*8.3)=9.28*10⁻⁷/9.96*10⁻²=1*10⁻⁵K
2.
S= 100 см²=1*10⁻²м²
h= 50 см =0,5м
m=50 кг
Δh= 10 см=0,1м
p₁= 760 мм. рт ст=100кПа
t₁= 12° C, Т=12+273=285К
t₂-?
из уравнения Клапейрона
p₁V₁/T₁=p₂V₂/T₂
Выразим из уравнения конечную температуру T2:
T₂=T₁p₂V₂/p₁V₁ (1)
Объем, занимаемый газом
V₁=Sh
V₂=S(h—Δh)
Запишем условие равновесия поршня (первый закон Ньютона) при начальном и конечном состоянии газа:
p₁S=p₀S+mпg
p₂S=p₀S+mпg+mg
Здесь mп — масса поршня, p0 — атмосферное давление.
решив систему, получим
p₂S=p₁S+mg
конечное давление p₂ больше начального p₁ на величину давления, которое создаёт груз, то есть:
p₂=p₁+mg/S
В итоге формула (1) примет такой вид:
T₂=T₁(p₁+mg/S)⋅S(h—Δh)/p₁⋅Sh
T2=T₁(1+mg/p₁S)⋅(1—Δh/h)
T2=285⋅(1+50⋅10/100⋅10³*10⁻²)⋅(1—0,1/0,5)=285*1,5/0,8=534,375К
t=534 - 273=261⁰C
ответ: 261° C.
Объяснение:
Определение
Однородное- поле, где линии магнитного поля параллельны и расположены с одинаковой густотой
Неоднородное- поле, где линии м. поля непраллельны и расположены с разной густотой, линии искривлены
Сила
В однородном- сила действия на магнитную стрелку одинакова по модулю и направлению в любой точке
В неоднородном- меняется от точки к точке
Линии м.п.
Однородное - с одинаковой густотой, параллельны
Неоднородное- наоборот
Примеры
Однородное- внутри постоянного полосового магнита в центральной его части
Неоднородное- поле вокруг прямолинейного проводника с током
V= 1,6*10⁻²м³
p= 2*10⁻³ м³
m= 1,2*10⁻²кг
M= 0,029 кг/моль
T-?
по уравнению Менделеева Клапейрона
pV=mRT/M
T=pVM/(mR)
T=2*10⁻³*1.6*10⁻²2.9*10⁻²/(1.2*10⁻²*8.3)=9.28*10⁻⁷/9.96*10⁻²=1*10⁻⁵K
2.
S= 100 см²=1*10⁻²м²
h= 50 см =0,5м
m=50 кг
Δh= 10 см=0,1м
p₁= 760 мм. рт ст=100кПа
t₁= 12° C, Т=12+273=285К
t₂-?
из уравнения Клапейрона
p₁V₁/T₁=p₂V₂/T₂
Выразим из уравнения конечную температуру T2:
T₂=T₁p₂V₂/p₁V₁ (1)
Объем, занимаемый газом
V₁=Sh
V₂=S(h—Δh)
Запишем условие равновесия поршня (первый закон Ньютона) при начальном и конечном состоянии газа:
p₁S=p₀S+mпg
p₂S=p₀S+mпg+mg
Здесь mп — масса поршня, p0 — атмосферное давление.
решив систему, получим
p₂S=p₁S+mg
конечное давление p₂ больше начального p₁ на величину давления, которое создаёт груз, то есть:
p₂=p₁+mg/S
В итоге формула (1) примет такой вид:
T₂=T₁(p₁+mg/S)⋅S(h—Δh)/p₁⋅Sh
T2=T₁(1+mg/p₁S)⋅(1—Δh/h)
T2=285⋅(1+50⋅10/100⋅10³*10⁻²)⋅(1—0,1/0,5)=285*1,5/0,8=534,375К
t=534 - 273=261⁰C
ответ: 261° C.