Вес спускаемого аппарата P=m*a, где m - масса аппарата, a - ускорение свободного падения у Сатурна. Оно находится из уравнения a=G*M1/R1², где G - гравитационная постоянная, M1 и R1 - масса и радиус Cатурна. Однако так как в условии M1 и R1 не даны, то найдём отношение a к g, где g - ускорение свободного падения у Земли. Так как g=G*M2/R2², где M2 и R2 - масса и радиус Земли, то a/g=(M1/M2)*(R2/R1)²=95*(1/12)²=95/144. А так как g≈9,8 м/с², то отсюда a≈9,8*95/144≈6,47 м/с². Тогда P≈254*6,47≈1643 Н.
Во-первых, нужно уметь изображать силы, действующие на тело. Не умеешь этого - не решишь задачу.
1) У нас по условию дано "небольшое тело". Пусть это - какой-нибудь квадрат (можно и быть оригинальнее, но преподаватель едва ли оценит).
Разумеется, на него действует сила тяжести mg и сила нормальной реакции опоры N.
Так как он движется, то на него действует и сила трения Fтр, направленная противоположно силе тяги Fтяг.
Собственно, все. Рассмотрим первый случай.
Наш квадрат движется равномерно, следовательно, с постоянной скоростью (почитай про принцип относительности Галилея).
Работает первый закон Ньютона - равнодействующая всех сил, действующих на квадрат, равна нулю (не забываем, что сила - это вектор и его нужно проецировать, чтобы посчитать):
Fтяг + N + mg + Fтр = 0.
с N, mg и Fтр все хорошо, а вот Fтяг нужно проецировать, причем на обе оси.
Для ОХ: Fтяг(x) = Fтяг * cosα Для OY: Fтяг(y) = Fтяг * sinα
Теперь проецируем все силы на оси ОX и OY.
OY: Fтяг sinα + N - mg = 0 => N = mg - Fтяг sinα OX: Fтяг cosα - u N = 0,
Fтяг cosα = u (mg - Fтяг sinα) =>
u = Fтяг cosα / (mg - Fтяг sinα)
Знаем коэф-т трения. Круто. Теперь можем найти ускорение исходя из второго случая.
2) Все делаем аналогично. Единственное, что изменилось - работает второй закон Ньютона (равнодействующая всех сил равна ma).
ответ: ≈1643 кг.
Объяснение:
Вес спускаемого аппарата P=m*a, где m - масса аппарата, a - ускорение свободного падения у Сатурна. Оно находится из уравнения a=G*M1/R1², где G - гравитационная постоянная, M1 и R1 - масса и радиус Cатурна. Однако так как в условии M1 и R1 не даны, то найдём отношение a к g, где g - ускорение свободного падения у Земли. Так как g=G*M2/R2², где M2 и R2 - масса и радиус Земли, то a/g=(M1/M2)*(R2/R1)²=95*(1/12)²=95/144. А так как g≈9,8 м/с², то отсюда a≈9,8*95/144≈6,47 м/с². Тогда P≈254*6,47≈1643 Н.
Во-первых, нужно уметь изображать силы, действующие на тело. Не умеешь этого - не решишь задачу.
1) У нас по условию дано "небольшое тело". Пусть это - какой-нибудь квадрат (можно и быть оригинальнее, но преподаватель едва ли оценит).
Разумеется, на него действует сила тяжести mg и сила нормальной реакции опоры N.
Так как он движется, то на него действует и сила трения Fтр, направленная противоположно силе тяги Fтяг.
Собственно, все. Рассмотрим первый случай.
Наш квадрат движется равномерно, следовательно, с постоянной скоростью (почитай про принцип относительности Галилея).
Работает первый закон Ньютона - равнодействующая всех сил, действующих на квадрат, равна нулю (не забываем, что сила - это вектор и его нужно проецировать, чтобы посчитать):
Fтяг + N + mg + Fтр = 0.
с N, mg и Fтр все хорошо, а вот Fтяг нужно проецировать, причем на обе оси.
Для ОХ: Fтяг(x) = Fтяг * cosα
Для OY: Fтяг(y) = Fтяг * sinα
Теперь проецируем все силы на оси ОX и OY.
OY: Fтяг sinα + N - mg = 0 => N = mg - Fтяг sinα
OX: Fтяг cosα - u N = 0,
Fтяг cosα = u (mg - Fтяг sinα) =>
u = Fтяг cosα / (mg - Fтяг sinα)
Знаем коэф-т трения. Круто. Теперь можем найти ускорение исходя из второго случая.
2) Все делаем аналогично. Единственное, что изменилось - работает второй закон Ньютона (равнодействующая всех сил равна ma).
OY: N = mg - Fтяг sinβ
OX: Fтяг cosβ - u N = ma,
Fтяг cosβ - ( Fтяг cosα * (mg - Fтяг sinβ) / (mg - Fтяг sinα) ) = ma =>
a = ( Fтяг cosβ - ( Fтяг cosα * (mg - Fтяг sinβ) / (mg - Fтяг sinα) ) ) / m.
Геморройный пример, да. Возможно, можно упростить, но мне лень.
Считаем, получаем a = 0,143 м/с^2 ≈ 0,14 м/с^2