Объект выделяет инфракрасное излучение при температуре 36С,что равно 309К.Насколько больше или меньше он будет выделять излучения при температуре 618К?можно с решение
Центростремительное (нормальное) ускорение — составляющая ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной (вторая составляющая, тангенциальное ускорение, характеризует изменение модуля скорости). Направлено к центру кривизны траектории, чем и обусловлен термин. Термин «центростремительное ускорение» эквивалентен термину «нормальное ускорение». Ту составляющую суммы сил, которая обуславливает это ускорение, называют центростремительной силой.Легко заметить, что абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.
Легко заметить, что абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.
Легко заметить, что абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.
Приведенные здесь или их варианты могут быть использованы для введения таких понятий, как кривизна кривой и радиус кривизны кривой[2] (поскольку в случае, когда кривая — окружность, R совпадает с радиусом такой окружности; не слишком трудно также показать, что окружность в плоскости с центром в направлении от данной точки на расстоянии R от неё — будет совпадать с данной кривой — траекторией — с точностью до второго порядка малости по расстоянию до данной точки).
500 м/с
Объяснение:
По закону збереження імпульсу:
Cумарний імпульс системи:
mv₁+mv₂+mv₃=0;
Невидомий імпульс mv₃ знайдемо по теоремі піфагора так як два інші осколки мають швидкості перпендикульрно направлені.
Импульс невидомого оскалка
mv₃²=mv₁²+mv₂²
Маси скорочуються бо рівні між собою, маємо:
v₃²=v₁²+v₂²
Звідки:
v₃=√(v₁²+v₂²)=√(300²+400²)=500 м/с.
Объяснение:
Центростремительное (нормальное) ускорение — составляющая ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной (вторая составляющая, тангенциальное ускорение, характеризует изменение модуля скорости). Направлено к центру кривизны траектории, чем и обусловлен термин. Термин «центростремительное ускорение» эквивалентен термину «нормальное ускорение». Ту составляющую суммы сил, которая обуславливает это ускорение, называют центростремительной силой.Легко заметить, что абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.
Легко заметить, что абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.
Легко заметить, что абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.
Приведенные здесь или их варианты могут быть использованы для введения таких понятий, как кривизна кривой и радиус кривизны кривой[2] (поскольку в случае, когда кривая — окружность, R совпадает с радиусом такой окружности; не слишком трудно также показать, что окружность в плоскости с центром в направлении от данной точки на расстоянии R от неё — будет совпадать с данной кривой — траекторией — с точностью до второго порядка малости по расстоянию до данной точки).