Если масса цепи: m, то масса свисающей части: m x /L,
масса лежащей на столе части: m (1 - x / L)
1) Часть, лежащая на столе:
Если силы трения нет, то на ту часть цепи, что еще на столе, по вертикали действуют сила тяжести и сила реакции опоры, что уравновешивают друг друга.
По горизонтали на границу этой части действует горизонтальная сила, стягивающая ее со стола. Уравнение движения (проекция на горизонтальное направление):
m (1 - x / L) a1 = T
a - горизонтальное ускорение части, лежащей на столе.
T - сила, с которой тянет настольную часть цепи ее свисающая часть.
2) Часть, свисающая вниз.
На нее действуют силы в горизонтальном направлении. В вертикальном направлении вниз действует сила тяжести:
m (x / L) g
И вверх действует сила T, с которой противодействует стягиванию остальная часть цепи. Тогда уравнение движения (проекция на вертикальное направление):
m (x / L) a2 = m (x / L) g - T
3) Помимо пренебрежения трением, принимаем еще допущение о том, что горизонтальная скорость части цепи, лежащей на столе, не достаточно велика, чтобы цепь перестала свисать, прижимаясь к углу стола. Тогда проекции ускорений a1 и a2 равны:
a = x''(t)
4) Тогда получаем два уравнения с двумя неизвестными:
m (1 - x / L) x '' = T
m (x / L) x'' = m g (x / L) - T
Исключаем из уравнения T:
m (x / L) x'' = m g (x / L) - m (1 - x / L) x''
Или:
x '' = (g / L) x
Представим скорость в виде:
x'(t) = v(t) = v(x(t))
Тогда:
x''(t) = dv/dt = (dv/dx) (dx/dt) = v (dv/dx)
Тогда уравнение примет вид:
v (dv/dx) = (g / L) x
Разделяем переменные:
v dv = (g / L) x dx
Умножаем на 2 и интегрируем:
v^2 = Const + (g / L) x^2
Избавляемся от квадрата слева:
v = sqrt[g/L] sqrt(C + x^2)
(выбран знак +, поскольку x увеличивается, и dx/dt = v > 0)
При t = 0, когда x равен своему известному начальному значению (обозначим x0), цепь покоится, что есть dx/dt = v = 0, тогда:
вообщем так получится:
v1=vo+at=at=2gt=40g (скорость, которую набрала ракета за 20 секунд)
далее тело двигалось вверх равнозамедленно с ускорением g и остановилось в некоторый момент t:
40g-gt=0
40g=gt => t=40 (c)
далее ракета падает вниз равноускоренно:
vк=gt (1)
теперь нужно найти расстояние, которое пролетит ракета вниз, она состоит из суммы двух пройденных ранее расстояний:
s=s1+s2=2g*t*t/2 + 40g*t-gt*t/2 = 4000 + 6000 = 10000
s=g*t*t/2, подставляем, находим t, подставляем время в (1), находим конечную скорость. осталось сложить время!
Пусть длина цепи: L
Пусть длина свисающей части: x
Тогда длина части, оставшейся на столе: L - x
Если масса цепи: m, то масса свисающей части: m x /L,
масса лежащей на столе части: m (1 - x / L)
1) Часть, лежащая на столе:
Если силы трения нет, то на ту часть цепи, что еще на столе, по вертикали действуют сила тяжести и сила реакции опоры, что уравновешивают друг друга.
По горизонтали на границу этой части действует горизонтальная сила, стягивающая ее со стола. Уравнение движения (проекция на горизонтальное направление):
m (1 - x / L) a1 = T
a - горизонтальное ускорение части, лежащей на столе.
T - сила, с которой тянет настольную часть цепи ее свисающая часть.
2) Часть, свисающая вниз.
На нее действуют силы в горизонтальном направлении. В вертикальном направлении вниз действует сила тяжести:
m (x / L) g
И вверх действует сила T, с которой противодействует стягиванию остальная часть цепи. Тогда уравнение движения (проекция на вертикальное направление):
m (x / L) a2 = m (x / L) g - T
3) Помимо пренебрежения трением, принимаем еще допущение о том, что горизонтальная скорость части цепи, лежащей на столе, не достаточно велика, чтобы цепь перестала свисать, прижимаясь к углу стола. Тогда проекции ускорений a1 и a2 равны:
a = x''(t)
4) Тогда получаем два уравнения с двумя неизвестными:
m (1 - x / L) x '' = T
m (x / L) x'' = m g (x / L) - T
Исключаем из уравнения T:
m (x / L) x'' = m g (x / L) - m (1 - x / L) x''
Или:
x '' = (g / L) x
Представим скорость в виде:
x'(t) = v(t) = v(x(t))
Тогда:
x''(t) = dv/dt = (dv/dx) (dx/dt) = v (dv/dx)
Тогда уравнение примет вид:
v (dv/dx) = (g / L) x
Разделяем переменные:
v dv = (g / L) x dx
Умножаем на 2 и интегрируем:
v^2 = Const + (g / L) x^2
Избавляемся от квадрата слева:
v = sqrt[g/L] sqrt(C + x^2)
(выбран знак +, поскольку x увеличивается, и dx/dt = v > 0)
При t = 0, когда x равен своему известному начальному значению (обозначим x0), цепь покоится, что есть dx/dt = v = 0, тогда:
0 = sqrt[g/L] sqrt(C + x0^2)
То есть: C = - x0^2, тогда:
v = sqr[g/L] sqrt(x^2 - x0^2)
или:
dx/dt = sqrt[g/L] sqrt(x^2 - x0^2)
Разделим переменные:
dx / sqrt(x^2 - x0^2) = sqrt[g/L] dt
Интегрируем:
arcch(x / x0) = sqrt[g/L] t + C
При t = 0, x = x0:
arcch(1) = C
Получаем:
arcch(x / x0) = arcch(1) + sqrt[g/L] t
От сюда выражаем t:
t = sqrt[L/g] { arcch(x / x0) - arcch(1) }
t = sqrt[L/g] { arcch(L / x0) - arcch(1) }
L = 6(м), x0 = 1(м)