F = Fд - сила давления на верхнюю грань болванки Считаем болванку в форме параллелепипеда. m = ρст.*V = ρст.*h*s => s = m/(ρст.*h1) = 200 кг / (7800 кг/м³ * 0,2 м) = = 0,13 м² - площадь верхней грани болванки. Fд. = p * s = (pг. + pатм.) * s = (ρв.*g*h + pатм.) * s = = (1000 кг/м³*10 Н/кг*(1 м - 0,2 м) + 1,01*10⁵ Па) * 0,13 м² = = (8000 Па + 1,01*10⁵ Па) * 0,13 м² = = (0,08*10⁵ Па + 1,01*10⁵ Па) * 0,13 м² = 1,09*10⁵ Па * 0,13 м² = = 1,4*10⁴ Н = 14 кН Именно эту силу нужно приложить чтобы оторвать болванку от дна. Архимедова сила здесь не т. к. вода под болванкой отсутствует, а сл-но отсутствует давление на верхнюю грань болванки. Давление на верхнюю грань наоборот создает силу, которая прижимает болванку к дну.
Вынужденные колебания возникают в системе под действием внешней периодической ЭДС. Если внешняя периодическая ЭДС является гармонической (т.е. изменяется по синусу или косинусу), то возникающие колебания будут гармоническими. Вынужденные колебания (установившиеся) происходят с частотой вынуждающей силы, их нельзя возбудить за счет ненулевых начальных условий. Амплитуда вынужденных колебаний зависит от амплитуды вынуждающей ЭДС, от инерциальных (индуктивность) свойств системы и от соотношения частоты вынуждающей силы и собственной частоты колебаний системы. Наряду с вынужденными колебаниями в системе при наличии ненулевых начальных условий возникают и собственные колебания, которые при наличии сопротивления будут затухающими. Эти колебания происходят с собственной частотой, их амплитуда зависит от начальных условий. В системе возникают также сопровождающие колебания, которые при наличии сопротивления также будут затухающими. Эти колебания происходят с собственной частотой, но их амплитуда зависит от параметров внешней ЭДС. При наличии активного сопротивления все колебания, кроме вынужденных колебаний с течением времени затухнут. Т.е. установившиеся колебания являются вынужденными колебаниями и происходят с частотой вынуждающей силы. Если частота вынуждающей силы мало отличается от частоты собственных колебаний, а активное сопротивление отсутствует, то наблюдаются биения - колебания, амплитуда которых медленно изменяется с течением времени по гармоническому закону. При приближении частоты вынуждающей ЭДС к частоте собственных колебаний наблюдается явление резонанса, которое заключается в резком увеличении амплитуды вынужденных колебаний. Резонансная частота зависит от параметров вынуждающей ЭДС, инерциальных свойств системы (индуктивности), собственной частоты и коэффициента затухания. При наличии сопротивления амплитуда заряда, силы тока достигает максимального значения при различной частоте вынуждающей силы. При отсутствии сопротивления в случае резонанса амплитуда колебаний монотонно нарастает со временем. При наличии активного сопротивления, амплитуда колебаний остается конечной величиной. При действии на систему периодической негармонической ЭДС, резонанс возможен, если период возмущающей силы равен или кратен периоду колебаний системы. Для силы тока резонанс наступает на собственной частоте $\omega _{0}$ не зависимо от величины затухания.
Считаем болванку в форме параллелепипеда.
m = ρст.*V = ρст.*h*s => s = m/(ρст.*h1) = 200 кг / (7800 кг/м³ * 0,2 м) =
= 0,13 м² - площадь верхней грани болванки.
Fд. = p * s = (pг. + pатм.) * s = (ρв.*g*h + pатм.) * s =
= (1000 кг/м³*10 Н/кг*(1 м - 0,2 м) + 1,01*10⁵ Па) * 0,13 м² =
= (8000 Па + 1,01*10⁵ Па) * 0,13 м² =
= (0,08*10⁵ Па + 1,01*10⁵ Па) * 0,13 м² = 1,09*10⁵ Па * 0,13 м² =
= 1,4*10⁴ Н = 14 кН
Именно эту силу нужно приложить чтобы оторвать болванку от дна.
Архимедова сила здесь не т. к. вода под болванкой отсутствует, а сл-но отсутствует давление на верхнюю грань болванки. Давление на верхнюю грань наоборот создает силу, которая прижимает болванку к дну.
Если внешняя периодическая ЭДС является гармонической (т.е. изменяется по синусу или косинусу), то возникающие колебания будут гармоническими.
Вынужденные колебания (установившиеся) происходят с частотой вынуждающей силы, их нельзя возбудить за счет ненулевых начальных условий.
Амплитуда вынужденных колебаний зависит от амплитуды вынуждающей ЭДС, от инерциальных (индуктивность) свойств системы и от соотношения частоты вынуждающей силы и собственной частоты колебаний системы.
Наряду с вынужденными колебаниями в системе при наличии ненулевых начальных условий возникают и собственные колебания, которые при наличии сопротивления будут затухающими. Эти колебания происходят с собственной частотой, их амплитуда зависит от начальных условий.
В системе возникают также сопровождающие колебания, которые при наличии сопротивления также будут затухающими. Эти колебания происходят с собственной частотой, но их амплитуда зависит от параметров внешней ЭДС.
При наличии активного сопротивления все колебания, кроме вынужденных колебаний с течением времени затухнут. Т.е. установившиеся колебания являются вынужденными колебаниями и происходят с частотой вынуждающей силы.
Если частота вынуждающей силы мало отличается от частоты собственных колебаний, а активное сопротивление отсутствует, то наблюдаются биения - колебания, амплитуда которых медленно изменяется с течением времени по гармоническому закону.
При приближении частоты вынуждающей ЭДС к частоте собственных колебаний наблюдается явление резонанса, которое заключается в резком увеличении амплитуды вынужденных колебаний.
Резонансная частота зависит от параметров вынуждающей ЭДС, инерциальных свойств системы (индуктивности), собственной частоты и коэффициента затухания.
При наличии сопротивления амплитуда заряда, силы тока достигает максимального значения при различной частоте вынуждающей силы.
При отсутствии сопротивления в случае резонанса амплитуда колебаний монотонно нарастает со временем.
При наличии активного сопротивления, амплитуда колебаний остается конечной величиной.
При действии на систему периодической негармонической ЭДС, резонанс возможен, если период возмущающей силы равен или кратен периоду колебаний системы.
Для силы тока резонанс наступает на собственной частоте $\omega _{0}$ не зависимо от величины затухания.